Transcript Document
INITIAL VALUE PROBLEMS REMEMBER NUMERICAL DIFFERENTIATION The derivative of y(x) at x0 is: y x0 lim y x0 h y x0 h 0 h An approximation to this is: y x0 y x0 h y x0 h for small values of h. Forward Difference Formula y x0 y x0 h y ( x 0 ) h hy x0 y x0 h y( x0 ) y( x0 ) hy x0 y x0 h y x0 h y( x0 ) hy x0 Provided h is small. y x0 h y( x0 ) hy x0 y x0 h y x0 y x0 error hy x0 h x0 x1 y x0 h y( x0 ) hy x0 The value of a function at x0 h can be approximated if we know its value and its slope at an earlier point, provided h is small. x0 A sequence can be written as: y1 y0 hy0 y1 y0 hy0 y2 y1 hy1 yn1 yn hyn In an initial value problem, and often written as: Therefore, yn is given f xn , yn yn1 yn hf xn , yn Euler’s Method yn1 yn hf xn , yn yn y( xn ) Value of y at yn1 y( xn1 ) x xn Value of y at x xn1 f xn , yn yxn First derivative of y at x xn h is a small number by which x is incremented. x1 x0 h x2 x1 h x0 2h x3 x2 h x0 3h xn x0 nh So what are we doing in Euler’s method? We are approximating the value of the function y at x = xn+1 based on the information that we obtained at the previous point, x = xn . The previous information are: The value of y at x = xn The value of the first derivative of y at x = xn yn1 yn hf xn , yn Consider the following initial value problem. y y x , y(0) 0.5 Find the value of y(0.8). Let h 0.1 Given: f xn , yn y(at x xn ) yn xn y( at x x0 ) y0 0.5 Our starting point. where x0 0 x1 x0 h 0 0.1 0.1 x2 x0 2h 0 2 0.1 0.2 x3 x0 3h 0 3 0.1 0.3 Based on the sequence generated by Euler’s method we can write: y1 y0 hf x0 , y0 f ( x0 , y0 ) y0 x0 0.5 0 0.5 y1 0.5 0.1 0.5 0.55 y2 y1 hf x1 , y1 x1 x0 h 0 0.1 0.1 f ( x1 , y1 ) y1 x1 0.55 0.1 0.45 y2 0.55 0.1 0.45 0.595 y3 y2 hf x2 , y2 x2 x0 2h 0 2 0.1 0.2 f ( x2 , y2 ) y2 x2 0.595 0.2 0.395 y3 0.595 0.1 0.395 0.6345 Approximate value of y at x = x3 is 0.6345. Therefore, we can write that y( 0.1) y1 0.55 y( 0.2 ) y2 0.595 y( 0.3) y3 0.6345 . . y( 0.8) y8 0.728205 Modified Euler’s Method (Heun’s Method) In the Modified Euler’s method an average value of the slope is used. 1 * yn1 yn h f xn , yn f xn1 , yn1 2 Where * n1 y * n1 is calculated using the Euler’s method. y yn hf xn , yn * n1 y * n1 y yn hf xn , yn as calculated using the Euler’s method shown above is used to obtain the 2nd slope. f xn1 , y * n1 1 * yn1 yn h f xn , yn f xn1 , yn1 2 Consider the previous initial value problem. y y x , y(0) 0.5 Find the value of y(0.8). Again,le t h 0.1 f ( x0 , y0 ) y0 x0 0.5 0 0.5 y 0.5 0.1 0.5 0.55 * 1 f ( x1, y ) y x1 0.55 0.1 0.45 * 1 * 1 1 * y1 y0 h f x0 , y0 f x1 , y1 2 1 * y1 y0 h f x0 , y0 f x1 , y1 2 1 y1 0.5 0.1 0.5 0.45 0.5475 2 f ( x1 , y1 ) y1 x1 0.5475 0.1 0.4475 y 0.5475 0.1 0.4475 * 2 0.59225 f ( x2 , y ) y x2 0.59225 0.2 * 2 * 2 0.39225 1 * y2 y1 h f x1 , y1 f x2 , y2 2 1 y2 0.5475 0.1 0.4475 0.39225 2 0.589487 Taylor’s Method of Order Two 2 h y( x h) y( x ) hy( x ) y( x ) R2 2! R2 is called Taylor’s remainder. If h is small then: 2 h y( x h) y( x ) hy( x ) y( x ) 2! 2 h y( x h) y( x ) hy( x ) y( x ) 2! Taylor’s method of order two can be written in the form of the following sequence. 2 h yn1 yn hyn yn 2 Solve the following IVP by using Taylor’s method of order two. y y x 1 , 0 x 1 , y(0) 1 Solution: y y 1 ( y x 1) 1 y x 2 h yn1 yn hyn yn 2 yn yn xn 1 yn yn xn 2 h yn1 yn hyn yn 2 2 h yn1 yn h( yn xn 1) ( yn xn ) 2 h 1 h 2 2 yn1 h yn h 2 2 xn h Let h = 0.1 yn1 0.905yn 0.095xn 0.1 Results with Taylor’s Method of Order Two n xn yn+1 0 0.0 1.005 1 0.1 1.019025 2 0.2 1.041218 3 0.3 1.070802 4 0.4 1.107076 Interpolation produces a function that matches the given data exactly. The function then should provide a good approximation to the data values at intermediate points. Interpolation may also be used to produce a smooth graph of a function for which values are known only at discrete points, either from measurements or calculations. Given data points Obtain a function, P(x) P(x) goes through the data points Use P(x) To estimate values at intermediate points y P(x) 8 ? 3 2 4 5 x Assume that a function goes through three points: x , y x , x , y x and x , y x . 0 0 1 1 2 2 y( x ) P ( x ) P x L0 x y x0 L1 x y x1 L2 x y x2 Lagrange Interpolating Polynomial P x L0 x y x0 L1 x y x1 L2 x y x2 ( x x1 )( x x2 ) P x y x0 ( x0 x1 )( x0 x2 ) ( x x0 )( x x2 ) y x1 ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) y x2 ( x2 x0 )( x2 x1 ) y( x ) P ( x ) 2 x x1 x2 P x y x0 ( x0 x1 )( x0 x2 ) 2 x x0 x 2 y x1 ( x1 x0 )( x1 x2 ) 2 x x0 x1 y x2 ( x2 x0 )( x2 x1 ) NUMERICAL INTEGRATION b a y( x )dx area under the curve f(x) between x a to x b. In many cases a mathematical expression for y(x) is unknown and in some cases even if y(x) is known its complex form makes it difficult to perform the integration. Simpson’s Rule: x2 x0 y x dx P x dx x2 x0 x1 x0 h and x2 x0 2h x2 x0 P x dx x2 x0 x2 x0 x2 x0 ( x x1 )( x x2 ) y x0 dx ( x0 x1 )( x0 x2 ) ( x x0 )( x x2 ) y x1 dx ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) y x2 dx ( x2 x0 )( x2 x1 ) x2 x0 y x dx P x dx x2 x0 h y x0 4 y x1 y x2 3 Runge-Kutta Method of Order Four Runge-Kutta method uses a sampling of slopes through an interval and takes a weighted average slope to calculate the end point. By using fundamental theorem as shown in Figure 1 we can write: y x0 h y( x0 ) hy x0 y x0 h y x0 y ( x0 ) error hy x0 h x0 x0 h y x0 h y x0 y ( x0 ) error hy x0 h x0 x0 h dy y x dx (1) y x n h y xn dy dx xn xn h Integrating both sides of Eqn. (1) we get dy y x dx (2) Applying appropriate limits to Eqn. (2) we get y xn1 y xn xn 1 xn y xn h y xn y x dx xn h xn y x dx (3) (4) Let us now concentrate on the right-hand side of Eqn. (4). xn h xn y x dx xn h xn P x dx (5) P(x) can be generated by utilizing Lagrange Interpolating Polynomial. Assume that the only information we have about a function, f(x) is that it goes through three points: x , y x , x , y x and x , y x . 0 0 1 1 2 2 P ( x ) y( x ) P x L0 x y x0 L1 x y x1 L2 x y x2 ( x x1 )( x x2 ) P x y x0 ( x0 x1 )( x0 x2 ) ( x x0 )( x x2 ) y x1 ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) y x2 ( x2 x0 )( x2 x1 ) Using Simpson’s Integration, x2 x0 y x dx P x dx x2 x0 x1 x0 h and x2 x0 2h x2 x0 P x dx x2 x0 x2 x0 x2 x0 x2 x0 ( x x1 )( x x2 ) y x0 dx ( x0 x1 )( x0 x2 ) ( x x0 )( x x2 ) y x1 dx ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) y x2 dx ( x2 x0 )( x2 x1 ) y x dx x2 x0 h P x dx y x0 4 y x1 y x2 3 ...………………….(6) We can apply Simpson’s Integration to Eqn. (6) with the following substitutions: x0 x n h h / 2 xn h xn ; x2 xn h ; and the midpoint, h x1 xn 2 h h y x dx y xn 4 y xn y xn h 6 2 ….(7) Compared to Euler’s Formula, an average of six slopes is used in Eqn. (7) instead of just one slope. Actually, the slope at the midpoint has a weight of 4. The slope at the midpoint can be estimated in two ways. xn h xn y x dx h h h y xn 2 y x n 2 y x n y x n h 6 2 2 y xn h y xn h h h y x 2 y x 2 y x y x h n n n n 6 2 2 y xn h y xn h h h y x 2 y x 2 y x y x h n n n n 6 2 2 h h h y xn1 y xn y xn 2 y xn 2 y xn y xn1 6 2 2 ........... (8) The slopes can be estimated in the following manner: y xn k1 f xn , yn h h h y xn k2 f xn , yn k1 2 2 2 h h h y xn k3 f xn , yn k2 2 2 2 y xn h k4 f xn h, yn hk3 Substituting the estimated slopes into Eqn. (8) gives the formula for Runge-Kutta Method of Fourth Order: yn1 h yn k1 2k2 2k3 k4 6