Transcript 投影片 1
3. Motion in 2- & 3-D 1. 2. 3. 4. 5. 6. Vectors Velocity & Acceleration Vectors Relative Motion Constant Acceleration Projectile Motion Uniform Circular Motion At what angle should this penguin leave the water to maximize the range of its jump? 45 3.1. Vectors Vectors: 1. Physics: Quantities with both magnitude & direction. 2. Mathematics : Members of a linear space. Scalars: Quantities with only magnitude. Displacement r r Position vector r r r r r r Vector addition: 1. Commutative: A + B = B + A 2. Associative: (A + B) + C = A +( B + C ) (Free vectors) a, b V c a b V Multiplication by scalar. A B A 2A z Coordinate system. A Cartesian coordinate system. Az k = Az y k j A Ax i = Ax Ay j = Ay Ay = Ay j i j i x x Ax = Ax i A Ax A y Az Vector components: A Ax A y A Ax i Ay j Ax ˆi Ay ˆj Unit vectors: Ax A cos Ay A sin A A A tan 2 2 x 2 y y Ay Ax A Ax i Ay j Az k Ax ˆi Ay ˆj Az kˆ Example 3.1. Taking a Drive You drive to city 160 km from home, going 35 N of E. Express your new position in unit vector notation, using an E-W / N-S coordinate system. r rx ˆi ry ˆj y (N) rx r cos 160 km cos35 city 160 0.81915 km 131.06 km 131 km r = 160 km ry r sin 160 km sin35 = 35 j x (E) home i 160 0.57357 r 131 ˆi 92 ˆj km km 91.77 km 92 km Vector Arithmetic with Unit Vectors A Ax ˆi Ay ˆj B Bx ˆi By ˆj Ax , Ay Bx , By AB Ax Bx & Ay By A B Ax Bx ˆi Ay By ˆj Ax Bx , Ay By 3.2. Velocity & Acceleration Vectors Average velocity (Instantaneous) velocity Average acceleration (Instantaneous) acceleration v r xˆ yˆ i+ j t t t v lim t 0 a r dr t dt x y , t t dxˆ d yˆ i+ j dt dt d x d y , d t d t v vx ˆ vy ˆ vx vy i+ j , t t t t t v d vx ˆ d vy ˆ d vx d v y dv i + j , t 0 t dt dt dt d t dt r t d2 r d2 x d2 x ˆ d2 y ˆ lim i+ j 2 2 2 2 t 0 t dt dt dt dt a lim d2 y , d t2 Velocity & Acceleration in 2-D a v circular motion 3.3. Relative Motion Motion is relative (requires frame of reference). Man walks at v = 4 km/h down aisle to front of plane, which move at V = 1000 km/h wrt (with respect to) ground. Man’s velocity wrt ground is v = v + V. Plane flies at v wrt air. Air moves at V wrt ground. Plane’s velocity wrt ground is v = v + V. Example 3.2. Navigating a Jetliner Jet flies at 960 km / h wrt air, trying to reach airport 1290 km northward. Assuming wind blows steadly eastward at 190 km / h. 1. What direction should the plane fly? 2. How long will the trip takes? Desired velocity Wind velocity V Jet velocity 190 km/h v v V v 960 km/h v vy ˆj 0 , v y V 190 km / h i 190 , 0 cos i sin j 960 cos , 960 sin v 960 km / h 0 , v 960 cos 190 , 960 sin y v cos 190 960 vy 960 sin Trip time t 1290 km 941 km / h 190 101.4 960 cos 1 941 km / h 1.4 h 3.4. Constant Acceleration Constant Acceleration: 2-D: 1 r r0 v 0 t a t 2 2 v v0 a t vx v0 x ax t v y v0 y a y t 1 x x0 vx 0 t ax t 2 2 1 y y0 v y 0 t a y t 2 2 a 0 , g x x0 y y0 x x0 vx 0 t 1 2 gt 2 y y0 1 2 gt 2 Example 3.3. Windsurfing You’re windsurfing at 7.3 m/s when a wind gust accelerates you 1 x x0 vx 0 t ax t 2 2 1 y y0 v y 0 t a y t 2 2 at 0.82 m/s2 at 60 to your original direction. If the gust lasts 8.7 s, what is your net displacement? r0 0 , 0 m v0 7.3 , 0 m / s 2 a 0.82 cos60 , sin 60 m / s2 0.41 , 0.71 m / s 1 x 7.3 t 0.41 t 2 2 y 1 0.71 t 2 2 net displacement r x 79.0 m y 26.9 m x 2 y 2 84 m 3.5. Projectile Motion 2-D motion under constant gravitational acceleration x x0 vx 0 t vx v0 x 1 y y0 v y 0 t g t 2 v y v0 y g t 2 y ~ x2 parabola vx v0 x Example 3.4. Washout A section of highway was washed away by flood, creating a gash 1.7 m deep. A car moving at 31 m/s goes over the edge. v y v0 y g t x x0 vx 0 t 1 y y0 v y 0 t g t 2 2 How far from the edge does it land? vx 0 31 m / s x0 0 vy 0 0 y0 1.7 m x 31 m / s t 0 1.7 m t 1.7 s 4.9 1 9.8 m / s 2 t 2 2 0.589 s x 31 0.589 m 18 m y0 Projectile Trajectory 1 x x0 vx 0 t ax t 2 x v cos t 0 0 0 2 1 2 1 y y0 v y 0 t a y t 2 y0 v0 sin 0 t g t 2 2 t x x0 v0 cos 0 x x0 1 x x0 y y0 v0 sin 0 g v cos 2 v cos 0 0 0 0 y y0 x x0 tan 0 g 2 x x 0 2 v02 cos2 0 2 Projectile trajectory: parabola Example 3.5. Out of the Hole A construction worker stands in a 2.6 m deep hole, 3.1 m from edge of hole. He tosses a hammer to a companion outside the hole. Let the hammer leave his hand 1.0 m above hole bottom at an angle of 35. 1. What’s the minimum speed for it to clear the edge? 2. How far from the edge does it land? y y0 x x0 tan 0 x0 0 x 3.1 m y0 1.0 m y 2.6 m 1.6 3.1tan 35 minimum speed 1.6 x tan 35 x 9.8 2 11 cos2 35 2 1 0.70 0.33 0.12 x2 g 2 x x 0 2 v02 cos2 0 9.8 2 3.1 2 v02 cos 2 35 v0 11 m / s 2 0.060 x 0.70 x 1.6 0 8.7 m 3.1 m 0 35 Lands at 5.5 m from edge. The Range of a Projectile y y0 x x0 tan 0 g 2 x x 0 2 v02 cos2 0 Horizontal range y = y0 : 0 x x0 tan 0 g 2 x x 0 2 v02 cos 2 0 x x0 2 v02 2 v02 v02 2 x x0 cos 0 tan 0 cos 0 sin 0 sin 20 g g g Longest range at 0 = 45 = /4. Prob 70: Range is same for 0 & /2 0. Prob 2.77: Projectile spends 71% in upper half of trajectory. Example 3.6. Probing the Atmosphere After a short engine firing, a rocket reaches 4.6 km/s. If the rocket is to land within 50 km from its launch site, what’s the maximum allowable deviation from a vertical trajectory? Short engine firing y 0, v0 = 4.6 km/s. g 2 0 x tan 0 2 x 2 v0 cos2 0 50 km 4.6 km / s g 2 x x 0 2 v02 cos 2 0 v02 v02 x2 sin 0 cos 0 sin 20 g g 2 9.8 103 km / s 2 sin 20 0.0232 y y0 x x0 tan 0 sin 2 0 1.33 20 180 1.33 0.67 90 0.67 0 maximum allowable deviation from a vertical trajectory is 0.67. 3.6. Uniform Circular Motion Uniform circular motion: circular trajectory, constant speed. Examples: Satellite orbit. Planetary orbits (almost). Earth’s rotation. Motors. Electrons in magnetic field. ⁞ r r2 r1 v v2 v1 v r v r r v t v v2 a t r v v 2 a lim t 0 t r v2 a rˆ r ( centripetal ) Example 3.7. Space Shuttle Orbit Orbit of space shuttle is circular at altitude 250 km, where g is 93% of its surface value. Find its orbital period. 2 r T v T 2 r ar 2 v2 a r 2 r a 6.37 103 km 250 km 0.93 9.8 10 3 km / s 2 5355 s ISS: r ~ 350 km 15.7 orbits a day 89 min (low orbits) Example 3.7. Engineering a Road Consider a flat, horizontal road with 80 km/h (22.2 m/s) speed limit. If the max vehicle acceleration is 1.5 m/s2, what’s the min safe radius for curves on this road. v2 a r 2 22.2 m / s 329 m vmax amax 1.5 m / s 2 2 rmin Nonuniform Circular Motion Nonuniform Circular Motion: trajectory circular, speed nonuniform a non-radial but ar = v2 / r v at ar a GOT IT? 3.4. Arbitrary motion: ar = v2 / r r = radius of curvature If v1 = v4 , & v2 = v3 , rank ak. Ans: a2 > a3 > a4 > a1