Transcript Document

1st Workshop on Energy Scaling
in Hadron-Hadron Collisions
Fermilab 2009
Rick’s View of Hadron Collisions
Rick Field
University of Florida
Outline of Talk
Outgoing Parton
 The early days of Feynman-Field
Proton
Phenomenology.
PT(hard)
Initial-State Radiation
AntiProton
Underlying Event
Underlying Event
 Studying “min-bias” collisions and
the “underlying event” in Run 1 at
CDF.
Outgoing Parton
Final-State
Radiation
 Tuning the QCD Monte-Carlo
model generators.
 Studying the “associated” charged
particle densities in “min-bias”
collisions.
Fermilab Energy Scaling Workshop
April 27, 2009
CDF Run 2
Rick Field – Florida/CDF/CMS
CMS at the LHC
Page 1
Toward and Understanding of
Hadron-Hadron Collisions
Feynman-Field Phenomenology1
Feynman
From 7 GeV/c
and
st
hat!
Field
Outgoing Parton
p0’s
to 600 GeV/c
Jets. The early days of trying to
understand and simulate hadronhadron collisions.
PT(hard)
Initial-State Radiation
Proton
AntiProton
Underlying Event
Outgoing Parton
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Underlying Event
Final-State
Radiation
Page 2
Hadron-Hadron Collisions
FF1 1977
 What happens when two hadrons
collide at high energy?
Hadron
Hadron
Feynman quote from FF1
???
“The model we shall choose is not a popular one,
 Most of the time the hadrons
ooze
so that we will not duplicate too much of the
through each other andwork
fall apart
(i.e.who are similarly analyzing
of others
no hard scattering). The
outgoing
various
models (e.g. constituent interchange
particles continue in roughly
the same
model, multiperipheral
models, etc.). We shall
Parton-Parton Scattering Outgoing Parton
assume
direction as initial proton
andthat the high PT particles arise from
“Soft” constituent
Collision (no large transverse momentum)
direct hard collisions between
antiproton.
quarks in the incoming particles, which
Hadron
Hadron
 Occasionally there will
be a large
fragment
or cascade down
into several hadrons.”
transverse momentum meson.
Question: Where did it come from?
 We assumed it came from quark-quark
elastic scattering, but we did not know
how to calculate it!
Outgoing Parton
high PT meson
“Black-Box Model”
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 3
Quark-Quark Black-Box Model
No gluons!
Quark Distribution Functions
determined from deep-inelastic
lepton-hadron collisions
FF1 1977
Feynman quote from FF1
“Because of the incomplete knowledge of
our functions some things can be predicted
with more certainty than others. Those
experimental results that are not well
predicted can be “used up” to determine
these functions in greater detail to permit
better predictions of further experiments.
Our papers will be a bit long because we
wish to discuss this interplay in detail.”
Quark-Quark Cross-Section
Unknown! Deteremined from
hadron-hadron collisions.
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Quark Fragmentation Functions
determined from e+e- annihilations
Page 4
Quark-Quark Black-Box Model
Predict
particle ratios
FF1 1977
Predict
increase with increasing
CM energy W
“Beam-Beam
Remnants”
Predict
overall event topology
(FFF1 paper 1977)
7 GeV/c p0’s!
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 5
Feynman Talk at Coral Gables
(December 1976)
1st transparency
Last transparency
“Feynman-Field
Jet Model”
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 6
QCD Approach: Quarks & Gluons
Quark & Gluon Fragmentation
Functions
Q2 dependence predicted from QCD
Parton Distribution Functions
Q2 dependence predicted from
QCD
FFF2 1978
Feynman quote from FFF2
“We investigate whether the present
experimental behavior of mesons with
large transverse momentum in hadron-hadron
collisions is consistent with the theory of
quantum-chromodynamics (QCD) with
asymptotic freedom, at least as the theory
is now partially understood.”
Quark & Gluon Cross-Sections
Calculated from QCD
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 7
A Parameterization of
the Properties of Jets
Field-Feynman 1978
Secondary Mesons
(after decay)
continue
 Assumed that jets could be analyzed on a “recursive”
principle.
(bk) (ka)
 Let f(h)dh be the probability that the rank 1 meson leaves
fractional momentum h to the remaining cascade, leaving
Rank 2
Rank 1
quark “b” with momentum P1 = h1P0.
 Assume that the mesons originating from quark “b” are
distributed in presisely the same way as the mesons which
(cb)
(ba)
Primary Mesons
came from quark a (i.e. same function f(h)), leaving quark
“c” with momentum P2 = h2P1 = h2h1P0.
cc pair bb pair
Calculate F(z)
from f(h) and b i!
Original quark with
flavor “a” and
momentum P0
Fermilab Energy Scaling Workshop
April 27, 2009
 Add in flavor dependence by letting bu = probabliity of
producing u-ubar pair, bd = probability of producing ddbar pair, etc.
 Let F(z)dz be the probability of finding a meson
(independent of rank) with fractional mementum z of the
original quark “a” within the jet.
Rick Field – Florida/CDF/CMS
Page 8
Feynman-Field Jet Model
R. P. Feynman
ISMD, Kaysersberg,
France, June 12, 1977
Feynman quote from FF2
“The predictions of the model are reasonable
enough physically that we expect it may
be close enough to reality to be useful in
designing future experiments and to serve
as a reasonable approximation to compare
to data. We do not think of the model
as a sound physical theory, ....”
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 9
High PT Jets
CDF (2006)
Feynman, Field, & Fox (1978)
Predict
large “jet”
cross-section
30 GeV/c!
Feynman quote from FFF
600writing,
GeV/c Jets!
“At the time of this
there is
still no sharp quantitative test of QCD.
An important test will come in connection
with the phenomena of high PT discussed here.”
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 10
CDF DiJet Event: M(jj) ≈ 1.4 TeV
ETjet1 = 666 GeV ETjet2 = 633 GeV
Esum = 1,299 GeV M(jj) = 1,364 GeV
M(jj)/Ecm ≈ 70%!!
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 11
Monte-Carlo Simulation
of Hadron-Hadron Collisions
FF1-FFF1 (1977)
“Black-Box” Model
F1-FFF2 (1978)
QCD Approach
FFFW “FieldJet” (1980)
QCD “leading-log order” simulation
of hadron-hadron collisions
my early days
yesterday
today
FF2 (1978)
Monte-Carlo
simulation of “jets”
“FF” or “FW”
Fragmentation
ISAJET
HERWIG
PYTHIA
(“FF” Fragmentation)
(“FW” Fragmentation)
(“String” Fragmentation)
SHERPA
Fermilab Energy Scaling Workshop
April 27, 2009
PYTHIA 6.4
Rick Field – Florida/CDF/CMS
HERWIG++
Page 12
The Fermilab Tevatron
CDF “SciCo” Shift December 12-19, 2008
My wife Jimmie on shift with me!
Proton
CDF
1 mile
AntiProton
Proton
2 TeV
 I joined CDF in January 1998.
Fermilab Energy Scaling Workshop
April 27, 2009
AntiProton
Acquired 4728 nb-1 during
8 hour “owl” shift!
Rick Field – Florida/CDF/CMS
Page 13
Proton-AntiProton Collisions
at the Tevatron
Elastic Scattering
The CDF “Min-Bias” trigger
picks up most of the “hard
core” cross-section plus a
Double
Diffraction
small
amount of single &
double diffraction.
M2
M1
Single Diffraction
M
stot = sEL + sIN
SD +sDD +sHC
1.8 TeV: 78mb
= 18mb
The “hard core” component
contains both “hard” and
“soft” collisions.
+ 9mb
+ (4-7)mb + (47-44)mb
CDF “Min-Bias” trigger
1 charged particle in forward BBC
AND
1 charged particle in backward BBC
Hard Core
“Inelastic Non-Diffractive Component”
“Hard” Hard Core (hard scattering)
Outgoing Parton
“Soft” Hard Core (no hard scattering)
Proton
AntiProton
PT(hard)
Beam-Beam Counters
3.2 < |h| < 5.9
Proton
AntiProton
Underlying Event
Underlying Event
Initial-State
Radiation
Final-State
Radiation
Outgoing Parton
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 14
QCD Monte-Carlo Models:
High Transverse Momentum Jets
Hard Scattering
Initial-State Radiation
Hard Scattering “Jet”
Initial-State Radiation
“Jet”
Outgoing Parton
PT(hard)
Outgoing Parton
PT(hard)
Proton
“Hard Scattering” Component
AntiProton
Final-State Radiation
Outgoing Parton
Underlying Event
Underlying Event
Proton
“Jet”
Final-State Radiation
AntiProton
Underlying Event
Outgoing Parton
Underlying Event
“Underlying Event”
 Start with the perturbative 2-to-2 (or sometimes 2-to-3) parton-parton scattering and add initial and finalstate gluon radiation (in the leading log approximation or modified leading log approximation).
 The “underlying event” consists of the “beam-beam remnants” and from particles arising from soft or
semi-soft multiple parton interactions (MPI).
The “underlying
event” is“jet”
an unavoidable
 Of course the outgoing colored partons fragment
into hadron
and inevitably “underlying event”
background to most collider observables
observables receive contributions from initial
and final-state radiation.
and having good understand of it leads to
more precise collider measurements!
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 15
Particle Densities
DhD = 4p = 12.6
2p

31 charged
charged particles
particle
Charged Particles
pT > 0.5 GeV/c |h| < 1
CDF Run 2 “Min-Bias”
CDF Run 2 “Min-Bias”
Observable
Average
Nchg
Number of Charged Particles
(pT > 0.5 GeV/c, |h| < 1)
3.17 +/- 0.31
0.252 +/- 0.025
PTsum
(GeV/c)
Scalar pT sum of Charged Particles
(pT > 0.5 GeV/c, |h| < 1)
2.97 +/- 0.23
0.236 +/- 0.018
Average Density
per unit h-
dNchg
chg/dhd = 1/4p
3/4p = 0.08
0.24
13 GeV/c PTsum
0
-1
h
+1
Divide by 4p
dPTsum/dhd = 1/4p
3/4p GeV/c = 0.08
0.24 GeV/c
Study the charged particles (pT > 0.5 GeV/c, |h| < 1) and form the charged
particle density, dNchg/dhd, and the charged scalar pT sum density,
dPTsum/dhd.
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 16
CDF Run 1: Evolution of Charged Jets
“Underlying Event”
Charged Particle D Correlations
PT > 0.5 GeV/c |h| < 1
Charged Jet #1
Direction
“Transverse” region
very sensitive to the
“underlying event”!
Look at the charged
particle density in the
“transverse” region!
2p
“Toward-Side” Jet
D
“Toward”
CDF Run 1 Analysis
Away Region
Charged Jet #1
Direction
D
Transverse
Region
“Toward”
“Transverse”

Leading
Jet
“Transverse”
Toward Region
“Transverse”
“Transverse”
Transverse
Region
“Away”
“Away”
Away Region
“Away-Side” Jet
0
-1
h
+1
 Look at charged particle correlations in the azimuthal angle D relative to the leading charged
particle jet.
 Define |D| < 60o as “Toward”, 60o < |D| < 120o as “Transverse”, and |D| > 120o as “Away”.
 All three regions have the same size in h- space, DhxD = 2x120o = 4p/3.
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 17
Run 1 Charged Particle Density
“Transverse” pT Distribution
"Transverse" Charged Particle Density: dN/dhd
Charged Particle Density
Charged Particle Jet #1
Direction
"Transverse"
PT(chgjet#1) > 5 GeV/cD
1.0E+00
CDF Min-Bias
CDF Run 1
CDF JET20
data uncorrected
0.75
0.50
Factor of 2!
0.25
1.8 TeV |h|<1.0 PT>0.5 GeV/c
0.00
0
5
10
15
20
25
30
35
40
45
PT(charged jet#1) (GeV/c)
PT(charged jet#1) > 30 GeV/c
“Transverse” <dNchg/dhd> = 0.56
“Min-Bias”
50
Charged Density dN/dhddPT (1/GeV/c)
"Transverse" Charged Density
1.00
CDF Run 1
data uncorrected
1.0E-01
“Toward”
"Transverse"
PT(chgjet#1) > 30 GeV/c
1.0E-02
“Transverse”
“Transverse”
1.0E-03
“Away”
1.0E-04
Min-Bias
1.0E-05
1.8 TeV |h|<1 PT>0.5 GeV/c
1.0E-06
CDF Run 1 Min-Bias data
<dNchg/dhd> = 0.25
0
2
4
6
8
10
12
14
PT(charged) (GeV/c)
 Compares the average “transverse” charge particle density with the average “Min-Bias”
charge particle density (|h|<1, pT>0.5 GeV). Shows how the “transverse” charge particle
density and the Min-Bias charge particle density is distributed in pT.
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 18
MPI: Multiple Parton
Interactions
“Hard”
Collision
Multiple
Parton
Interaction
outgoing parton
“Hard” Component
“Semi-Hard” MPI
“Soft” Component
AntiProton
Proton
initial-state radiation
initial-state radiation
outgoing parton
final-state radiation
or
+
outgoing jet
final-state radiation
 PYTHIA models the “soft” component of the underlying event
with color string fragmentation, but in addition includes a
contribution arising from multiple parton interactions (MPI) in
which one interaction is hard and the other is “semi-hard”.
Beam-Beam Remnants
color string
color string
 The probability that a hard scattering events also contains a semi-hard multiple parton
interaction can be varied but adjusting the cut-off for the MPI.
 One can also adjust whether the probability of a MPI depends on the PT of the hard
scattering, PT(hard) (constant cross section or varying with impact parameter).
 One can adjust the color connections and flavor of the MPI (singlet or nearest neighbor,
q-qbar or glue-glue).
 Also, one can adjust how the probability of a MPI depends on PT(hard) (single or double
Gaussian matter distribution).
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 19
Tuning PYTHIA:
Multiple Parton Interaction Parameters
Parameter
Default
Description
PARP(83)
0.5
Double-Gaussian: Fraction of total hadronic
matter within PARP(84)
PARP(84)
0.2
Double-Gaussian: Fraction of the overall hadron
radius containing the fraction PARP(83) of the
total hadronic matter.
Multiple Parton Interaction
Color String
Color String
PARP(86)
PARP(89)
PARP(90)
PARP(67)
0.33
0.66
1 TeV
0.16
1.0
Probability that the MPI produces two gluons
with color connections to the “nearest neighbors.
Multiple PartonDetermine
Interactionby comparing
with 630 GeV data!
Probability that the MPI produces two gluons
either as described by PARP(85) or as a closed
gluon
loop.
remaining
fraction consists of
Affects
the The
amount
of
quark-antiquark
pairs.
initial-state radiation!
Color String
Hard-Scattering Cut-Off PT0
5
Determines the reference energy E0.
Determines the energy dependence of the cut-off
PT0 as follows PT0(Ecm) = PT0(Ecm/E0)e with
e = PARP(90)
A scale factor that determines the maximum
parton virtuality for space-like showers. The
larger the value of PARP(67) the more initialstate radiation.
PYTHIA 6.206
e = 0.25 (Set A))
4
PT0 (GeV/c)
PARP(85)
Take E0 = 1.8 TeV
3
2
e = 0.16 (default)
1
100
1,000
10,000
100,000
CM Energy W (GeV)
Reference point
at 1.8 TeV
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 20
PYTHIA 6.206 Defaults
MPI constant
probability
scattering
PYTHIA default parameters
6.115
6.125
6.158
6.206
MSTP(81)
1
1
1
1
MSTP(82)
1
1
1
1
PARP(81)
1.4
1.9
1.9
1.9
PARP(82)
1.55
2.1
2.1
1.9
PARP(89)
1,000
1,000
1,000
PARP(90)
0.16
0.16
0.16
4.0
1.0
1.0
PARP(67)
4.0
1.00
"Transverse" Charged Density
Parameter
"Transverse" Charged Particle Density: dN/dhd
CDF Data
Pythia 6.206 (default)
MSTP(82)=1
PARP(81) = 1.9 GeV/c
data uncorrected
theory corrected
0.75
0.50
0.25
1.8 TeV |h|<1.0 PT>0.5 GeV
0.00
0
5
10
15
20
25
30
35
40
45
50
PT(charged jet#1) (GeV/c)
CTEQ3L
CTEQ4L
CTEQ5L
CDF Min-Bias
CDF JET20
 Plot shows the “Transverse” charged particle density versus PT(chgjet#1) compared to the
QCD hard scattering predictions of PYTHIA 6.206 (PT(hard) > 0) using the default
parameters for multiple parton interactions and CTEQ3L, CTEQ4L, and CTEQ5L.
Note Change
PARP(67) = 4.0 (< 6.138)
PARP(67) = 1.0 (> 6.138)
Fermilab Energy Scaling Workshop
April 27, 2009
Default parameters give
very poor description of
the “underlying event”!
Rick Field – Florida/CDF/CMS
Page 21
Run 1 PYTHIA Tune A
CDF Default!
PYTHIA 6.206 CTEQ5L
"Transverse" Charged Particle Density: dN/dhd
Parameter
Tune B
Tune A
MSTP(81)
1
1
MSTP(82)
4
4
PARP(82)
1.9 GeV
2.0 GeV
PARP(83)
0.5
0.5
PARP(84)
0.4
0.4
PARP(85)
1.0
0.9
"Transverse" Charged Density
1.00
CDF Preliminary
0.75
1.0
0.95
PARP(89)
1.8 TeV
1.8 TeV
PARP(90)
0.25
0.25
PARP(67)
1.0
4.0
New PYTHIA default
(less initial-state radiation)
Fermilab Energy Scaling Workshop
April 27, 2009
Run 1 Analysis
0.50
0.25
CTEQ5L
PYTHIA 6.206 (Set B)
PARP(67)=1
1.8 TeV |h|<1.0 PT>0.5 GeV
0.00
0
PARP(86)
PYTHIA 6.206 (Set A)
PARP(67)=4
data uncorrected
theory corrected
5
10
15
20
25
30
35
40
45
50
PT(charged jet#1) (GeV/c)
 Plot shows the “transverse” charged particle density
versus PT(chgjet#1) compared to the QCD hard
scattering predictions of two tuned versions of PYTHIA
6.206 (CTEQ5L, Set B (PARP(67)=1) and Set A
(PARP(67)=4)).
Old PYTHIA default
(more initial-state radiation)
Rick Field – Florida/CDF/CMS
Page 22
PYTHIA Tune A Min-Bias
“Soft” + ”Hard”
Tuned to fit the CDF Run 1
“underlying event”!
PYTHIA Tune A
CDF Run 2 Charged
DefaultParticle Density
Charged Particle Density: dN/dhd
1.0
CDF Published
1.0E+00
0.8
CDF Min-Bias Data
1.0E-01
0.6
0.4
0.2
Pythia 6.206 Set A
1.8 TeV all PT
CDF Min-Bias 1.8 TeV
0.0
-4
-3
-2
-1
0
1
2
3
4
Pseudo-Rapidity h
 PYTHIA regulates the perturbative 2-to-2
parton-parton cross sections with cut-off
parameters
which allows one to run with
Lots of “hard” scattering in
PT“Min-Bias”
(hard) > 0.
One
can simulate both “hard”
at the
Tevatron!
and “soft” collisions in one program.
Charged Density dN/dhddPT (1/GeV/c)
dN/dhd
Pythia 6.206 Set A
1.8 TeV |h|<1
1.0E-02
12% of “Min-Bias” events
have PT(hard) > 5 GeV/c!
PT(hard) > 0 GeV/c
1.0E-03
1% of “Min-Bias” events
have PT(hard) > 10 GeV/c!
1.0E-04
1.0E-05
CDF Preliminary
1.0E-06
0
2
4
6
8
10
12
14
PT(charged) (GeV/c)
 The relative amount of “hard” versus “soft” depends on the cut-off and can be tuned.
 This PYTHIA fit predicts that 12% of all “Min-Bias” events are a result of a hard 2-to-2
parton-parton scattering with PT(hard) > 5 GeV/c (1% with PT(hard) > 10 GeV/c)!
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 23
PYTHIA Tune A
LHC Min-Bias Predictions
Hard-Scattering in Min-Bias Events
Charged Particle Density
50%
12% of “Min-Bias”
events
have|h|<1
PT(hard) > 10 GeV/c!
1.0E+00
Pythia 6.206 Set A
Pythia 6.206 Set A
40%
% of Events
Charged Density dN/dhddPT (1/GeV/c)
1.0E-01
1.0E-02
PT(hard) > 5 GeV/c
PT(hard) > 10 GeV/c
30%
20%
1.8 TeV
1.0E-03
10%
14 TeV
1.0E-04
0%
100
1,000
10,000
100,000
CM Energy W (GeV)
630 GeV
LHC?
1.0E-05
 Shows the center-of-mass energy dependence
CDF Data
1.0E-06
0
2
4
6
8
PT(charged) (GeV/c)
1% of “Min-Bias” events
have PT(hard) > 10 GeV/c!
10
12
14
of the charged particle density,
dNchg/dhddPT, for “Min-Bias” collisions
compared with PYTHIA Tune A with
PT(hard) > 0.
 PYTHIA Tune A predicts that 1% of all “Min-Bias” events at 1.8 TeV are a result of a hard
2-to-2 parton-parton scattering with PT(hard) > 10 GeV/c which increases to 12% at 14 TeV!
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 24
CDF Run 1 PT(Z)
Parameter
Tune A
Tune AW
UE Parameters MSTP(81)
1
1
MSTP(82)
4
4
PARP(82)
2.0 GeV
2.0 GeV
PARP(83)
0.5
0.5
PARP(84)
0.4
0.4
PARP(85)
0.9
0.9
PARP(86)
0.95
0.95
PARP(89)
1.8 TeV
1.8 TeV
PARP(90)
0.25
0.25
PARP(62)
1.0
1.25
PARP(64)
1.0
0.2
PARP(67)
4.0
4.0
MSTP(91)
1
1
PARP(91)
1.0
2.1
PARP(93)
5.0
15.0
ISR Parameters
Z-Boson Transverse Momentum
0.12
PT Distribution 1/N dN/dPT
PYTHIA 6.2 CTEQ5L
Tune used by the
CDF-EWK group!
CDF Run 1 Data
PYTHIA Tune A
PYTHIA Tune AW
CDF Run 1
published
0.08
1.8 TeV
Normalized to 1
0.04
0.00
0
2
4
6
8
10
12
14
16
18
Z-Boson PT (GeV/c)
 Shows the Run 1 Z-boson pT distribution (<pT(Z)>
≈ 11.5 GeV/c) compared with PYTHIA Tune A
(<pT(Z)> = 9.7 GeV/c), and PYTHIA Tune AW
(<pT(Z)> = 11.7 GeV/c).
Effective Q cut-off, below which space-like showers are not evolved.
Intrensic KT
The Q2 = kT2 in as for space-like showers is scaled by PARP(64)!
Fermilab Energy Scaling Workshop
April 27, 2009
20
Rick Field – Florida/CDF/CMS
Page 25
Jet-Jet Correlations (DØ)
Jet#1-Jet#2 D Distribution
D Jet#1-Jet#2
 MidPoint Cone Algorithm (R = 0.7, fmerge = 0.5)
 L = 150 pb-1 (Phys. Rev. Lett. 94 221801 (2005))
 Data/NLO agreement good. Data/HERWIG agreement
good.
 Data/PYTHIA agreement good provided PARP(67) =
1.0→4.0 (i.e. like Tune A, best fit 2.5).
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 26
CDF Run 1 PT(Z)
PYTHIA 6.2 CTEQ5L
Tune DW
Tune AW
UE Parameters MSTP(81)
1
1
MSTP(82)
4
4
PARP(82)
1.9 GeV
2.0 GeV
PARP(83)
0.5
0.5
PARP(84)
0.4
0.4
PARP(85)
1.0
0.9
PARP(86)
1.0
0.95
PARP(89)
1.8 TeV
1.8 TeV
PARP(90)
0.25
0.25
PARP(62)
1.25
1.25
PARP(64)
0.2
0.2
PARP(67)
2.5
4.0
MSTP(91)
1
1
PARP(91)
2.1
2.1
PARP(93)
15.0
15.0
ISR Parameters
PT Distribution 1/N dN/dPT
Parameter
Z-Boson Transverse Momentum
0.12
CDF Run 1 Data
PYTHIA Tune DW
HERWIG
CDF Run 1
published
0.08
1.8 TeV
Normalized to 1
0.04
0.00
0
2
4
6
8
10
12
14
16
18
20
Z-Boson PT (GeV/c)
 Shows the Run 1 Z-boson pT distribution (<pT(Z)>
≈ 11.5 GeV/c) compared with PYTHIA Tune DW,
and HERWIG.
Tune DW uses D0’s perfered value of PARP(67)!
Intrensic KT
Tune DW has a lower value of PARP(67) and slightly more MPI!
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 27
All use LO as
with L = 192 MeV!
PYTHIA 6.2 Tunes
UE Parameters
ISR Parameter
Parameter
Tune AW
Tune DW
Tune D6
PDF
CTEQ5L
CTEQ5L
CTEQ6L
MSTP(81)
1
1
1
MSTP(82)
4
4
4
PARP(82)
2.0 GeV
1.9 GeV
1.8 GeV
PARP(83)
0.5
0.5
0.5
PARP(84)
0.4
0.4
0.4
PARP(85)
0.9
1.0
1.0
PARP(86)
0.95
1.0
1.0
PARP(89)
1.8 TeV
1.8 TeV
1.8 TeV
PARP(90)
0.25
0.25
0.25
PARP(62)
1.25
1.25
1.25
PARP(64)
0.2
0.2
0.2
PARP(67)
4.0
2.5
2.5
MSTP(91)
1
1
1
PARP(91)
2.1
2.1
2.1
PARP(93)
15.0
15.0
15.0
Uses CTEQ6L
Tune A energy dependence!
Intrinsic KT
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 28
All use LO as
with L = 192 MeV!
PYTHIA 6.2 Tunes
UE Parameters
Tune A
ISR Parameter
Parameter
Tune DWT
Tune D6T
ATLAS
PDF
CTEQ5L
CTEQ6L
CTEQ5L
MSTP(81)
1
1
1
MSTP(82)
4
4
4
PARP(82)
1.9409 GeV
1.8387 GeV
1.8 GeV
PARP(83)
0.5
0.5
0.5
ATLAS energy dependence!
PARP(84)
0.4
0.4
Tune
B 0.5
Tune
AW
Tune BW
These are 1.0
“old” PYTHIA
6.2
PARP(85)
1.0
0.33 tunes!
are new 6.420
tunes
PARP(86)There 1.0
1.0
0.66 by
PARP(89)
1.96 TeV
TeV
1.0 TeV
Peter Skands
(Tune1.96S320,
update
of S0)
PARP(90)
0.16
0.16 N324,0.16
Peter Skands
(Tune
N0CR)
PARP(62)
1.25
1.25
1.0
Hendrik Hoeth (Tune P329, “Professor”)
PARP(64)
0.2
0.2
1.0
PARP(67)
2.5
2.5
1.0
MSTP(91)
1
1
1
PARP(91)
Tune D
PARP(93)
Tune 2.1
DW
15.0
2.1
15.0
5.0
Tune D6T
Intrinsic KT
Fermilab Energy Scaling Workshop
April 27, 2009
1.0
Tune D6
Rick Field – Florida/CDF/CMS
Page 29
JIMMY at CDF
JIMMY
Runs with HERWIG and adds
multiple parton interactions!
PT(JIM)= 2.5 GeV/c.
Jet #1 Direction
JIMMY: MPI
J. M. Butterworth
J. R. Forshaw
M. H. Seymour
D
“Toward”
“Transverse”
PT(JIM)= 3.25 GeV/c.
“Transverse”
"Transverse" ETsum Density: dET/dhd
4.0
"Transverse" ETsum Density (GeV)
The Energy in the “Underlying
Event” in High PT Jet Production
JIMMY was tuned to fit
the energy density in the
“transverse” region for
“leading jet” events!
JIMMY Default
1.96 TeV
HW
3.0
2.0
PY Tune A
JM325
"Leading Jet"
1.0
CDF Run 2 Preliminary
MidPoint R = 0.7 |h(jet)| < 2
The Drell-Yan JIMMY Tune
PTJIM = 3.6 GeV/c,
PT(particle jet#1) (GeV/c)
JMRAD(73) = 1.8
"Transverse" PTsum Density: dPT/dhd
JMRAD(91) = 1.8
generator level theory
All Particles (|h|<1.0)
0.0
0
“Away”
Outgoing Parton
Initial-State Radiation
AntiProton
Underlying Event
Outgoing Parton
Underlying Event
Final-State
Radiation
"Transverse" PTsum Density (GeV/c)
1.6
PT(hard)
Proton
100
200
300
400
500
JIMMY Default
1.96 TeV
1.2
JM325
PY Tune A
0.8
"Leading Jet"
HW
0.4
MidPoint R = 0.7 |h(jet)| < 2
CDF Run 2 Preliminary
generator level theory
Charged Particles (|h|<1.0, PT>0.5 GeV/c)
0.0
“Transverse” <Densities> vs PT(jet#1)
Fermilab Energy Scaling Workshop
April 27, 2009
0
50
Rick Field – Florida/CDF/CMS
100
150
200
250
300
350
400
450
500
PT(particle jet#1) (GeV/c)
Page 30
Min-Bias “Associated”
Charged Particle Density
“Associated” densities do
not include PTmax!
Highest pT
charged particle!
Charged Particle Density: dN/dhd
PTmax Direction
PTmax Direction
0.5
D
Correlations in 
Charged Particle Density
CDF Preliminary
Associated Density
PTmax not included
data uncorrected
0.4
D
Charge Density
0.3
0.2
0.1
Min-Bias
Correlations
in 
Charged Particles
(|h|<1.0, PT>0.5 GeV/c)
PTmax
0.0
0
30
60
90
120
150
180
210
240
270
300
330
360
D (degrees)
 Use the maximum pT charged particle in the event, PTmax, to define a direction and look
It is more probable
to find
a particle
at the the “associated”
density, dN
chg/dhd,
in “min-bias” collisions (pT > 0.5 GeV/c, |h| <
accompanying
PTmax
than
it
is
to
1).
find a particle in the central region!
 Shows the data
on the D dependence of the “associated” charged particle density,
dNchg/dhd, for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) relative
to PTmax (rotated to 180o) for “min-bias” events. Also shown is the average charged
particle density, dNchg/dhd, for “min-bias” events.
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 31
Min-Bias “Associated”
Charged Particle Density
Rapid rise in the particle
density in the “transverse”
region as PTmax increases!
Associated Particle Density: dN/dhd
PTmaxDirection
Direction
PTmax
D
“Toward”
“Transverse”
“Transverse”
Correlations in 
“Away”
Associated Particle Density
Jet #1
D
PTmax > 2.0 GeV/c
1.0
PTmax > 2.0 GeV/c
PTmax > 1.0 GeV/c
0.8
Charged Particles
(|h|<1.0, PT>0.5 GeV/c)
CDF Preliminary
data uncorrected
PTmax > 0.5 GeV/c
Transverse
Region
0.6
Transverse
Region
0.4
0.2
Jet #2
PTmax
PTmax not included
Min-Bias
0.0
0
30
60
90
120
150
180
210
240
270
300
330
360
D (degrees)
Ave Min-Bias
0.25 per unit h-
PTmax > 0.5 GeV/c
 Shows the data on the D dependence of the “associated” charged particle density,
dNchg/dhd, for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) relative
to PTmax (rotated to 180o) for “min-bias” events with PTmax > 0.5, 1.0, and 2.0 GeV/c.
 Shows “jet structure” in “min-bias” collisions (i.e. the “birth” of the leading two jets!).
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 32
Min-Bias “Associated”
Charged Particle Density
PY Tune A
PTmax > 2.0 GeV/c
PTmax Direction
Direction
PTmax
D
“Toward”
“Transverse”
“Transverse”
Correlations in 
“Away”
PTmax > 2.0 GeV/c
Associated Particle Density
D
Associated Particle Density: dN/dhd
1.0
CDF Preliminary
PY Tune A
0.8
data uncorrected
theory + CDFSIM
PTmax > 0.5 GeV/c
PY Tune A
Transverse
Region
0.6
PY Tune A 1.96 TeV
Transverse
Region
0.4
0.2
PTmax
PTmax not included
(|h|<1.0, PT>0.5 GeV/c)
0.0
0
30
60
90
120
PTmax > 0.5 GeV/c
150
180
210
240
270
300
330
360
D (degrees)
 Shows the data on the D dependence of the “associated” charged particle density,
dNchg/dhd, for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) relative
to PTmax (rotated to 180o) for “min-bias” events with PTmax > 0.5 GeV/c and PTmax >
2.0 GeV/c compared with PYTHIA Tune A (after CDFSIM).
 PYTHIA Tune A predicts a larger correlation than is seen in the “min-bias” data (i.e.
Tune A “min-bias” is a bit too “jetty”).
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 35
Min-Bias “Associated”
Charged Particle Density
PTmax Direction
Associated Charged
Charged
Particle
Density:
dN/dhd
Associated
"Transverse"
ChargedParticle
ParticleDensity:
Density:dN/dhd
dN/dhd
D
Associated Charged Particle Density: dN/dhd
10.0
Charged Particle Density
py Tune A generator level
“Toward” Region
PTmax > 2.0 GeV/c
PTmax > 5.0 GeV/c
1.0
PTmax > 10.0 GeV/c
“Transverse”
“Transverse”
0.1
Min-Bias
1.96 TeV
PTmax > 0.5 GeV/c
PTmax > 1.0 GeV/c
Charged Particles (|h|<1.0, PT>0.5 GeV/c)
0.0
Density
"Transverse"
Charged
Density
Charged Particle
1.6
2.5
1.2
RDF Preliminary
RDF Preliminary
RDF Preliminary
py Tune A generator level
py Tune A generator level
1.0
2.0
1.2
0.8
1.5
Min-Bias
Min-Bias
Min-Bias
14 TeV
1.96 TeV
“Toward”
14 TeV
"Toward"
"Away"
"Toward"
“Transverse”
~ factor of "Away"
2!
“Transverse”
0.8
0.6
1.0
0.4
0.4
0.5
0.2
1.96 TeV
"Transverse"
"Transverse"
“Away”
Charged
ChargedParticles
Particles(|h|<1.0,
(|h|<1.0,PT>0.5
PT>0.5 GeV/c)
GeV/c)
Charged
Particles
(|h|<1.0,
PT>0.5
GeV/c)
0.0
0.0
0
30
60
90
120
150
180
210
240
270
300
330
360
00
2
D (degrees)
54
6
8
10
10
12
15
14
16
20
18
PTmax (GeV/c)
(GeV/c)
PTmax
 Shows the D dependence of the “associated” charged particle density, dNchg/dhd, for charged
particles (pT > 0.5 GeV/c, |h| < 1, not including PTmax) relative to PTmax (rotated to 180o) for
“min-bias” events at 1.96 TeV with PTmax > 0.5, 1.0, 2.0, 5.0, and 10.0 GeV/c from PYTHIA
Tune A (generator level).
PTmax Direction
D
“Toward”
“Transverse”
“Transverse”
“Away”
 Shows the “associated” charged particle density in the “toward”, “away” and
“transverse” regions as a function of PTmax for charged particles (pT > 0.5
GeV/c, |h| < 1, not including PTmax) for “min-bias” events at 1.96 TeV from
PYTHIA Tune A (generator level).
Fermilab Energy Scaling Workshop
April 27, 2009
Rick Field – Florida/CDF/CMS
Page 37
25
20
25
1st Workshop on Energy Scaling
in Hadron-Hadron Collisions
 Rick Field Talk 2 Tomorrow at 1:30pm
From Min-Bias to the Underlying Event
Comparing with the
630 GeV data
CDF Run 2 Underlying
Event Studies
 Rick Field Talk 3 Wednesday at 9:00am
From CDF to CMS
Extrapolating to the LHC
Fermilab Energy Scaling Workshop
April 27, 2009
Tune S320 and P329
compared with Tune A,
DW, and DWT
Rick Field – Florida/CDF/CMS
Page 38