PRACTICAL RADIATION PHYSICS FOR MEDICAL EMERGENCY

Download Report

Transcript PRACTICAL RADIATION PHYSICS FOR MEDICAL EMERGENCY

PRACTICAL RADIATION PHYSICS FOR EMERGENCY MEDICAL PERSONNEL Module III

Module III

What is radiation?

- 2

Module III

Ionizing radiation

- 3

Electromagnetic radiation

VISIBLE IONIZING RADIATON X-RAYS COSMIC MICROVAVES TV, RADIO INFRARED ULTRAVIOLET Decreasing wave length Increasing frequency Increasing photon energy GAMMA

- 4 Module III

Module III

Forms of ionizing radiation

Directly ionizing Particulate radiation consisting of atomic or subatomic particles (electrons, protons, etc.) which carry energy in the form of kinetic energy of mass in motion Indirectly ionizing Electromagnetic radiation in which energy is carried by oscillating electrical and magnetic fields travelling through space at speed of light

- 5

Origin of radiation

Module III

What is the relationship between atom structure and radiation production?

- 6

Atom anatomy

Module III

Electron Proton Neutron

Nucleons - 7

Module III

Isotopes

- 8

Module III

Why are some nuclides radioactive

?

Neutron to proton ratio

- 9

Half-life

Module III - 10

Activity

The number of decaying nuclei per unit of time The Systéme International (SI) unit of radioactivity is the Becquerel (Bq) One Bq = 1 disintegration per second

Module III

Non-SI unit of radioactivity is the Curie (Ci) One Ci = 3,7 x 10 10 transformations per second One milicurie (mCi) = 3,7 x 10 7 s -1 One microcurie (μCi) = 3.7 x 10 4 s -1 1 Bq = 2.7 x 10 -11 Ci

- 11

Module III

Atomic symbols

A MASS NUMBER (

the number of protons and neutrons)

Z X SYMBOL OF ELEMENT N

The number of neutrons

ATOMIC NUMBER (

the number of protons) Example:

131 53 I 78 131

I or I-131

- 12

Module III

Mass-energy relationship

Measured Mass Calculated Mass

E= mc

2 - 13

Module III

Fission

- 14

Module III

Nuclear reaction and energy production

- 15

Module III Mechanisms of radioactive decay - 16

Alpha (α

++

) decay

Module III

A Z X A-4 Z-2 Y + 4 2 He e.g. 238 92 U 234 90 Th + 4 2 He

- 17

Beta (

) decay

Module III

n p + e + υ A Z X

A Z+1 Y +e +

e.g. 131 53 I

131 54 Xe+e +

 - 18

Positron (

+

) decay

Module III

p n + e +

+ υ

A Z X

A Z-1 Y+e + +

e.g. 18 9 F

18 8 O+e + +

 - 19

Module III

Electron capture

p + + e -

n +

A Z X

A Z-1 Y +

125 53 I

125 52 Te+

 - 20

Module III

Gamma (

) emission

- 21

Module III

Nuclear energy levels: gamma radiation

SIMPLIFIED NUCLEAR MODEL Gamma ray

- 22

Module III

How does radiation interact with matter?

- 23

Module III

Excitation

- 24

Ionization

Module III

Electron removal by ionization

- 25

Module III

Alpha particle interaction

- 26

Module III

Interaction of alpha radiation with living matter: external deposition

Alpha radiation is not external hazard.

The maximum range in tissue is <0.1 mm

All alpha radiation is absorbed in stratum corneum

- 27

Interaction of alpha radiation with living matter: internal deposition Prime danger is inhalation and ingestion of

Module III

alpha emitter

- 28

Module III

Beta interaction with matter

- 29

Interaction of beta radiation with living matter Cell nucleus Cell diameter 1.7 MeV beta 100 cell diameter alpha 0.15 MeV beta beta 5.3 MeV alpha Auger

Module III

I I I I I ı 0.001 0.01 0.1 1 10 100 mm

- 30

Module III

Positron interaction:

annihilation reaction

- 31

Module III

Neutron interaction

- 32

Module III

Neutron activation

- 33

Interaction of gamma radiation with matter

In terms of ionization, gamma radiation interacts with matter in three main ways 1. Photoelectric effect 2. Compton scattering 3. Pair production

- 34 Module III

Module III Gamma interaction by photoelectric effect - 35

Module III Gamma interaction by Compton scattering - 36

Module III Pair production - 37

Module III

Extranuclear energy release

Bremsstrahlung radiation

Characteristic X rays

Auger electrons

- 38

Module III

Bremsstrahlung radiation

- 39

Module III

Importance of bremsstrahlung X rays in radiation safety practice

- 40

Module III

Characteristic X rays

- 41

Module III Difference between X rays and gamma rays - 42

Module III

Internal conversion: Auger electrons

- 43

Module III

Specific ionization and linear energy transfer (LET)

- 44

Module III

Penetrating power of radiation

- 45

Review points

Characteristics of representative types of ionizing radiation

particulate, charged, and directly ionizing radiation of alpha and beta particles

particulate, uncharged, and indirectly ionizing radiation of neutrons

electromagnetic, uncharged, and indirectly ionizing radiation of gamma rays and X rays.

Radiation interacts with matter via two main processes: ionization and excitation

Energy, which comes in many forms, can be converted from one form to another

Nuclear potential energy is converted into kinetic energy through nuclear fission

Conversion of mass to energy was predicted by Albert Einstein in his mass-energy equation, E = mc 2

Penetrating power of ionizing radiation is relative to radiation type and energy

Module III - 46