Implementation of Penelope physics in Geant4

Download Report

Transcript Implementation of Penelope physics in Geant4

Validation of the
Bremsstrahlung models
Susanna Guatelli, Barbara Mascialino, Luciano Pandola,
Maria Grazia Pia, Pedro Rodrigues, Andreia Trindade
INFN Genova – INFN Gran Sasso Laboratory - LIP
IEEE Nuclear Science Symposium
San Diego, 30 October – 4 November 2006
Geant4 electron Bremsstrahlung
2 electromagnetic physics packages
Standard
Low Energy
3 Bremsstrahlung processes
G4eBremsstrahlung
Tsai
angular distribution
G4eLowEnergyBremsstrahlung
Tsai
2BN
2BS
angular distributions
G4PenelopeBremsstrahlung
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
2
Validation of Geant4 EM physics
Ongoing large-scale project
K. Amako et al.,
IEEE Trans. Nucl. Sci. 52 (2005) 910
NSS 2006
N
I
S
T
Photon mass attenuation coefficient
Range, Stopping power (e, p, a)
Atomic relaxation (fluorescence, Auger effect)
Proton Bragg peak
Electron Bremsstrahlung
Bremsstrahlung
Difficult to find reference data
1st validation cycle:
focus on low energy
Difficult to disentangle effects
Thin/thick target experiments
(because of the continuous part)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
3
The experimental set-up
e- beam(70 keV-10 MeV) incident on
a slab of material
Electrons and d-rays are absorbed
Bremsstrahlung photons can be transmitted
Photon
(energy, θ)
θ
electrons
Yield, Energy and Polar Angle
of the emitted photons
Quantitatitative comparison
of experimental - simulated distributions
Z axis
Secondary production
threshold = 0.5 mm
Statistical Toolkit
Goodness-of-Fit test
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
4
Preliminary results
Data sets
Work in progress!
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
Thin target: Be, Al, Au - 2.7, 4.5, 9.7 MeV
Double differential cross sections
W.E. Dance et al., Journal of Appl. Phys. 39 (1968) 2881
Thick target: Al, Fe – 0.5, 1 MeV
Double differential cross sections
Integrated g yield
R. Ambrose et al., NIM B 56/57 (1991) 327
Absolute and relative yield
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
5
Double differential s at 2.7 MeV
on thin (2.63 mg/cm2) Be target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
data
+ simulation
Energy (MeV)
data
+ simulation
Energy (MeV)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
6
Double differential s at 4.5 MeV
on thin (2.63 mg/cm2) Be target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
data
+ simulation
Energy (MeV)
data
+ simulation
Energy (MeV)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
7
Double differential s at 9.7 MeV
on thin (2.63 mg/cm2) Be target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
data
+ simulation
Energy (MeV)
data
+ simulation
Energy (MeV)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
8
Double differential s at 2.7 MeV
on thin (0.878 mg/cm2) Al target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
data
+ simulation
Energy (MeV)
data
+ simulation
Energy (MeV)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
9
Double differential s at 2.7 MeV
on thin (0.878 mg/cm2) Al target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
data
+ simulation
data
+ simulation
Energy (MeV)
Energy (MeV)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
10
Double differential s at 4.5 MeV
on thin (0.878 mg/cm2) Al target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
data
+ simulation
data
+ simulation
Energy (MeV)
Energy (MeV)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
11
Double differential s at 9.7 MeV
on thin (0.878 mg/cm2) Al target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
data
+ simulation
data
+ simulation
Energy (MeV)
Energy (MeV)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
12
Double differential s at 2.7 MeV
on thin (0.209 mg/cm2) Au target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
data
+ simulation
Energy (MeV)
data
+ simulation
Energy (MeV)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
13
Double differential s at 4.5 MeV
on thin (0.209 mg/cm2) Au target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
data
+ simulation
Energy (MeV)
data
+ simulation
Energy (MeV)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
14
Double differential s at 9.7 MeV
on thin (0.209 mg/cm2) Au target
N. Starfelt et al., Phys. Rev. 102 (1956) 1598
data
+ simulation
data
+ simulation
Energy (MeV)
Energy (MeV)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
15
500 keV
Angular distribution
Ethr = 46 keV
W.E. Dance et al., Journal of
Applied Physics 39 (1968) 2881
500 keV electrons on
Al (0.548 g/cm2) and Fe (0.257 g/cm2)
Thick target experiment
Standard package
Red = data
Black = simulation
Absolute comparison
o  Al
  Fe
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
16
500 keV
Angular distribution
W.E. Dance et al., Journal of Applied Physics 39 (1968) 2881
precise
agreement!
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
17
500 keV
Angular distribution
W.E. Dance et al., Journal of Applied Physics 39 (1968) 2881
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
18
1 MeV
Angular distribution
Standard package
Same test for 1 MeV primary
electrons (threshold: 50 keV)
W.E. Dance et al., Journal of
Applied Physics 39 (1968) 2881
Targets: Al (0.548 g/cm2)
and Fe (0.613 g/cm2)
Red = data
Black = simulation
Absolute comparison
o  Al
  Fe
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
19
1 MeV
Angular distribution
W.E. Dance et al., Journal of Applied Physics 39 (1968) 2881
precise
agreement!
Good agreement for Al - Reasonable also for Fe (2BN)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
20
500 keV
Angular distribution
W.E. Dance et al., Journal of Applied Physics 39 (1968) 2881
2BS: good for Al and Fe (except in the backward direction)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
21
Integral g yield
Total g yield on Al integrated
on  (0  p) and
on energy (Eth  Emax)
Standard process
o  data
  simul.
W.E. Dance et al., Journal of Applied
Physics 39 (1968) 2881
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
22
Angular distributions
70 keV
Low Energy Package
Penelope
Penelope
Standard
TSAI
Low Energy
(TSAI)
2BS
Angle (deg)
2BN
Angle (deg)
Angular distribution of photons is strongly model-dependent
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
23
R. Ambrose et al., Nucl. Instr.
Meth. B 56/57 (1991) 327
photon
direction
70 keV e-
Intensity/Z (eV/sr keV)
Energy distribution at 70 keV
Penelope
Low Energy TSAI
45 deg
Photon energy (keV)
70 keV electrons impinging on Al (25.4 mg/cm2)
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
24
Penelope
Photon energy (keV)
Intensity/Z (eV/sr keV)
Intensity/Z (eV/sr keV)
Relative comparison at 70 keV
Low Energy TSAI
Photon energy (keV)
Relative comparison (45° direction)
Shapes of the spectra are in good agreement
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
25
Conclusions



A project is in progress to test all Geant4
Bremsstrahlung models
Rigorous, quantitative comparison against
experimental data
Preliminary results at low energies


Power of the toolkit strategy
Geant4 models differ significantly at low energy
S. Guatelli, B. Mascialino, L. Pandola, M.G. Pia, P. Rodrigues, A. Trindade
26