Transcript Folie 1

Hot 1-2 Loop QCD***
B. Kämpfer
Research Center Dresden-Rossendorf
Technical University Dresden
real, purely imaginary
100 MeV – 100 GeV
G^2 HTL QPM  eQPM vs. lattice QCD
***: M. Bluhm, R. Schulze, D. Seipt
universe
RHIC SPS
AGS
SIS
Andronic, PBM, Stachel: *
LHC
HTL QPM
CJT
symmetry preserving appoximations:
2-Loop Approximation
 1-loop self-energies
+ HTL self-energies  gauge invariance
Λ
Karsch et al.
Non-Zero Mu
flow equation
now
forbidden
p=0
R. Schulze
Down to T = 0
Rapidly Rotating Quark Stars
with R. Meinel, D. Petroff, C. Teichmuller (Univ. Jena)
exact (numerical) solution of Einstein equation (axisymmetry & stationarity)
 free boundary problem
Tc matters
shedding limit: kinky edge
HTL QPM  eQPM
, 2+1
neglect small contributions  eQPM
+ asympt. disp. relations
collect. modes + Landau
Purely Imaginary Mu
Nf = 4
M.P. Lombardo et al.
T=3.5,2.5,1.5,1.1 Tc
cont. to real mu:
polyn. cont.
Roberge-Weiss Z3 symmetry
M.Bluhm
Going to High Temperatures
Fodor et al.
Boyd et al.
region of fit
Aoki et al.
M.Bluhm
Susceptibilities: Test of Mu Dependence

10% problem
data: Allton et al., Nf = 2
data: Allton et al., Nf = 2
data: Allton et al., Nf = 2
also good agreement with Gavai-Gupta data for
sensible test of flow eq. & baryon charge carriers
(no di-quarks etc. needed)
Examples of Side Conditions
T = 1.1 Tc
d
u
e
solid: pure Nf=2 quark matter, electr.neutr.
dashed: Nf=2 quark matter + electrons
in beta equilibrium
Naive chiral extrapolation
Karsch et al.
Cheng et al.
CFT
Pisarski formula for
plasma frequency
not really supported by 1-loop self-energies
Quark mass dependence of 1-loop self-energies
gluons
G
plasmons
Feynman gauge
dispersion relation
g = 0.3
g=1
g=3
quarks
plasmino (2)
dispersion relations
g = 0.3
g=1
g=3
D. Seipt 2007: 1-loop self-energies with finite m_q
HTL
1-loop
gauge dependence:
Feynman = Coulomb
asymptotically
asymptotic dispersion relations
Using the EoS
Bernard 0.2
Bernard 0.1
Karsch
Aoki
Nf = 2 +1
RHIC
Init.conds.
A Family of EoS‘s
QPM
+
lin.interpol.
fix
*
+
+
sound waves
interpolation is better
than extrapolation
Hydro for RHIC
Using the EoS Family within Kolb-Heinz Hydro Package
sensitivity to EoS near Tc
(cf. Huovinen)
LHC Predictions
smaller v2
Towards CBM @ FAIR: CEP
3 D Ising model
Conclusions
2-loop Γ+ HTL + g  G: - good fits of EoS
- small contributions of plasmon,
plasmino, Landau damp.
effective QPM: only T gluons + quarks, simpl. disp. rel.
- imaginary mu
- high T
- susceptibilities
- useable EoS for RHIC + LHC
elementary excitations in QGP = ?
lattice QCD  spectral functions, propagators
(transport coefficients)