Transcript Folie 1
Baryonic matter physics at the Nuclotron
Peter Senger (GSI) Outline: The physics case: - Baryonic matter at neutron star densities - Strange matter: hyperons, hypernuclei, strange dibaryons Experimental requirements and rate estimates NICA/JINR-FAIR Bilateral Workshop, FIAS, Frankfurt, April 2-4, 2012
Nuclotron beam intensity, particles per cycle Beam 4 d p d He
Current
3 10 10 3 10 10 6 10 8 2 10 8
Ion source type
Duoplasmotron --- ,, -- --- ,, -- ABS (“Polaris”)
Nuclotron-M (2010)
8
10 10 8
10 10 2
10 9 2
10 8
Nuclotron-N (2012)
5
10 11 5
10 11 3
10 10 7
10 10
(SPI) New ion source + booster (2014)
5
10 12 5
10 12 1
10 12 7
10 10
(SPI)
7 10 12 24 14 24 56 Li B C Mg N Ar Fe 84 Kr
2 10 9 1 10 9 2 10 9 2 10 8 1 10 7 4 10 6 1 10 6 1 10 5
Laser --- ,, -- --- ,, -- --- ,, -- ESIS (“Krion-2”) --- ,, -- --- ,, -- --- ,, -- 7
10 9 3
10 9 6
10 9 7
10 8 3
10 7 8
10 6 4
10 6 2
10 5 3
10 10 2
10 9 3
10 10 4
10 9 3
10 8 2
10 9 2
10 9 1
10 8 5
10 11 7
10 10 3
10 11 4
10 10 5
10 10 2
10 10 5
10 10 1
10 9 124 Xe
1 10 4
--- ,, -- 1
10 5 7
10 7 1
10 9 197 Au
-
--- ,, -- 7
10 7 1
10 9
Nuclotron-M (2010): vacuum ( I
Nuclotron-N (2012) : new ESIS (KRION 6T: I x2) + Adiabatic RF capture (I x100), new power supply system, orbit correction, automatization;
x2)
G.Trubnikov, NICA RT5
x20) + Reconstructed LU-20 (new RFQ + H-resonator:
28 Aug 2010
Nuclear matter and strangeness physics at Nuclotron energies
Nuclear matter equation-of-state, new forms of nuclear matter at high densities?
What are the properties and the degrees-of-freedom of nuclear matter at neutron star core densities?
Production of single and double hypernuclei Can we establish a third dimension of the nuclear chart? Strange matter: Does strange matter exist in the form of heavy multi-strange objects?
?
s d u s s u Λ Λ
Dense nuclear matter in heavy ion collisions
Messengers from the dense fireball at Nuclotron beam energies
φ, Ξ , Ω π, K, Λ, ...
p, Λ, Ξ + , Ω + ρ → e + e , μ + μ ρ → e + e , μ + μ resonance decays ρ → e + e , μ + μ -
Available data on strangeness production
AGS Au+Au HADES Ar+KCL 1.76 A GeV 2 A GeV 4 A GeV centr. Au+Au 4 A GeV FOPI Al+Al 1.93 A GeV S
*
(1385)
+
Au+Au 4 A GeV (statistical model)
AGS
Proton collective flow from AGS (1988-1999)
collective flow driven by pressure E895 Collaboration, C. Pinkenburg et al., Phys. Rev. Lett. 83, 1295 (1999). No conclusion on the nuclear compressibility at high densities (2 – 5 ρ 0 ) P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592
Probing the nuclear equation-of-state at 2 – 3 ρ
0 Idea: Subthreshold particle production via multiple collisions is sensitive to nuclear density K + yield baryon density ρ compressibility κ stiff EOS soft EOS Experiment:C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39 Theory: Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974
(sub)threshold production of K + mesons: soft EOS Neutron star J1614-2230 with M =1.976 0.04 M stiff EOS?
Exploring the "nuclear" EOS at 3ρ 0 < ρ < 7ρ 0 with (sub)threshold production of multistrange hyperons Direct production: pp
-
K + K + p (E thr pp
-
K + K + K 0 p (E thr pp Λ 0 Λ 0 pp (E thr pp
+
pp
+
-
pp (E thr
-
pp (E thr = 3.7 GeV) = 7.0 GeV) = 7.1 GeV) = 9.0 GeV) = 12.7 GeV)
N
FAIR NICA Production via multiple strangeness exchange reactions: Hyperons (s quarks): 1. pp 2. p Λ 0 3.
4.
K K + + Λ
-
0 Λ 0 Λ 0
-
p
,
Λ 0
-
n
-
p
, ,
p, pp Λ πΛ 0
-
K K 0 K + K pp, K +
-
π,
-
0
-
Antihyperons (anti-s quarks): 1. Λ 0 2.
+
K K + +
+
0
+
+ .
, AGS SPS Measure excitation function for multi-strange hyperons in light and heavy collision systems
Hyperon production in Au+Au collisions at 4 A GeV HYPQGSM calculations Ξ → Λπ Ω →ΛK MB MY BB BY YY Y: hyperon B: Baryon M: meson Multi-strange hyperon production dominantly via ΛΛ collisions
Hypernuclei and metastable multi-strange objects
?
H. Stöcker et al., Nucl. Phys. A 827 (2009) 624c
Double-strange hypernuclei
Double strangeness exchange: K + p K + + Ξ – Ξ + 12 C ΛΛ 6 He + 4 He + t ΛΛ 6 He Λ 5 He + p + π Observed ΛΛ hypernuclei: 1963: ΛΛ 10 Be (Danysz et al.) 1966: ΛΛ 6 He (Prowse et al.) 1991: ΛΛ 10 Be or ΛΛ 10 Be (KEK-E176) 2001: ΛΛ 4 H (BNL-E906) 2001: ΛΛ 6 He (KEK-E373) 2001: ΛΛ 10 Be (KEK-E373)
Multi-strange hypernuclei in A+A collisions Production via coalescence of hyperons and light nuclei Thermal model: A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, arXiv:1010.2995v1 Λ + Λ + Λ + Ξ Ω – – + + 2 3 4 4 4 H He He He Ξ – + 4 He He Λ 3 H Λ 4 Λ 5 He He Λ Λ 5 Ξ 5 Ω 5 H He ? He ?
Yield of ΛΛ 5 H ≈ 2·10 -6 4 He ΛΛ 5 H ΛΛ 6 He ≈ 4·10 -8 Λ 5 He π Λ p π Nuclotron (√s NN = 3.3 GeV)
Possible experiment layout
tracking chambers Dipole magnet
TOF wall measures Time-of-flight for mass determination.
Time-of-flight wall (RPC) Silicon tracker
Silicon tracker in magnetic dipole field measures tracks (multiplicity) and curvature (particle momentum).
6 m
Tracking chambers may be needed to match tracks in Silicon detector to hits in TOF wall
Strange particle reconstruction without TOF in central Au+Au collisions at 4 A GeV
UrQMD+GEANT+CBMroot (CBM detector model)
I. Vassiliev, Frankfurt
Measured yields in 10000 central collisions of Au+Au at 4.0 A GeV: ~ 11000 Λ ~ 4000 K 0 s ~ 8 Ξ -
10 8 central
Hyperon production in Au+Au collisions at 4 A GeV HYPQGSM calculations
Hypernuclei production in Au+Au collisions at 4 A GeV HYPQGSM calculations: A.Zinchenko et al. (LHEP JINR)
Hyperon yields at the Nuclotron
4 A GeV min. bias Au+Au collisions, Multiplicities from statistical model, Reaction rate 10 5 /s Particle Anti + + E thr NN GeV 3.7
6.9
7.1
9.0
12.7
M central 1 10 -1 2 10 -3 2 10 -4 6 10 -5 1 10 -5 M m.bias
2.5
10 -2 5 10 -4 5 10 -5 1.5
10 -5 2.5
10 -6 ε % 3 3 15 3 3 Yield/s m. bias 75 1.5
0.15
4.5
10 -2 7.5
10 -3 Yield/week m. bias 4.5
10 7 9 10 5 9 10 4 2.7
10 4 4.5
10 3
Hypernuclei yields at the Nuclotron
4 A GeV min. bias Au+Au collisions, Multiplicities from statistical model, Reaction rate 10 5 /s Hyper nucleus Λ 3 H ΛΛ 5 H ΛΛ 5 He M central 2 10 -2 2 10 -6 4 10 -8 M m.bias
5 10 -3 5 10 -7 1 10 -8 ε % 1 1 1 Yield/s m. bias 5 5 10 -4 1 10 -5 Yield/week m. bias 3 10 6 300 6
Conclusions
Promising observables for a fixed-target experiment at the Nuclotron: • Multi-strange hyperons (EOS at neutron star density) • Production of single and double hypernuclei • Multi-strange dibaryons ?
Experimental requirements: • Magnet + tracking detectors with high granularity (track reconstruction, momentum determination) • Time-of-flight detector (particle identification) • Projectile-Spectator Detector (reaction plane) • Fast readout electronics and online event selection • Beam intensities of N B = 10 7 -10 8 ions/sec
Experiments on superdense nuclear matter Experiment STAR@RHIC BNL NA61@SPS CERN MPD@NICA Dubna CBM@FAIR Darmstadt BM@N Dubna Energy range (Au/Pb beams) s NN E kin = 20 – 160 A GeV s NN = 6.4 – 17.4 GeV s NN = 7 – 200 GeV = 4.0 – 11.0 GeV E kin = 2.0 – 35 A GeV s NN = 2.7 – 8.3 GeV E kin = 2.0 – 4.5 A GeV s NN = 2.6 – 3.3 GeV Reaction rates 10 5 Hz 1 – 800 (limitation by luminosity) 80 (limitation by detector) ~1000 (design luminosity of 10 27 cm -2 s -1 for heavy ions) – 10 7 (limitation by detector) 10 5 (limitation by DAQ/trigger) Advantage of collider experiments: Uniform phase-space coverage when measuring excitation functions.
complementary measurements with CBM@FAIR and MPD@NICA