Transcript Cobra

K. Zuber, Uni. Sussex
IDEA Meeting,
Zaragoza 7 Nov. 2005
Status of COBRA
Contents
• Introduction
• Current status of
COBRA
• The 64 detector
array
• Longer term
planning
• Summary
C0BRA
Use large amount of
CdZnTe
Semiconductor Detectors
Array of 1cm3
CdTe detectors
K. Zuber, Phys. Lett. B 519,1 (2001)
+ further interested institutes
Cobra - The people
C. Gößling, H. Kiel, D. Münstermann, S. Oehl, T. Villett
University of Dortmund
J. Dawson, C. Montag, D. Polzaird,
C. Reeve, J. Wilson, K. Zuber
University of Sussex
P.F. Harrison, B. Morgan, Y. Ramachers, D. Stewart
University of Warwick
A. Boston, P. Nolan
University of Liverpool
B. Fulton, A. Smith, R. Wadsworth
University of York
T. Bloxham, M. Freer
University of Birmingham
P. Seller
Rutherford Appleton Laboratory
M. Junker
Laboratori Nazionali del Gran Sasso
COBRA 2005
some are missing...
Isotopes
COBRA: CdZnTe semiconductors
nat. ab. (%) Q (keV)
Zn70
Cd114
Cd116
Te128
Te130
Zn64
Cd106
Cd108
Te120
0.62
28.7
7.5
31.7
33.8
48.6
1.21
0.9
0.1
1001
534
2805
868
2529
1096
2771
231
1722
Decay mode
ß-ßß-ßß-ßß-ßß-ßß+/EC
ß+ß+
EC/EC
ß+/EC
Level schemes
Quite a few lines...
++ - modes
n
p
e
In general:
Double charged higgs bosons,
R-parity violating SUSY couplings,
leptoquarks...
n
• (A,Z)  (A,Z-2) + 2 e+ (+2e)
p
e
++ Q-4mec2
• e- + (A,Z)  (A,Z-2) + e+ (+2e ) +/EC Q-2mec2
• 2 e- + (A,Z)  (A,Z-2) (+2e)
EC/EC Q
Important to reveal mechanism if 0 is discovered
Enhanced sensitivity to right handed weak currents (V+A)
Neutrino mass vs. right handed currents
H int  jL J L  jL J R  jR J L  jR J R
<>
EC/ß+

,  1
Possible
evidence
<m> (eV)
M. Hirsch et al., Z. Phys. A 347,151 (1994)
Advantages
• Source = detector
• Semiconductor (Good energy resolution, clean)
• Room temperature
• Modular design (Coincidences)
• Two isotopes at once
• Industrial development of CdTe detectors
•
116Cd
above 2.614 MeV
• Tracking („Solid state TPC“)
Contents
• Introduction
• Current status of
COBRA
• The 64 detector
array
• Longer term
planning
• Summary
Running periods
•
•
•
•
•
Running at LNGS since February 2004
Scheme driven by money/manpower
CAMAC DAQ - 4 detector prototype
CAMAC DAQ - 4 detector prototype mod.
VME DAQ - 4 detector prototype modified
Background
116Cd
(Q=2805 keV)
• Alphas, Betas, Gammas
• Cosmogenics
Measurement: E. Porras et al., NIM B 111, 325 (1996)
• neutrons
113Cd
(nth,)114Cd
• 2
• muon induced neutrons
2 - decay
2 is ultimate, irreducible background
Energy resolution important  semiconductor
8Q(E /Q) 6
10
F


3.7
*10
Fraction of 2 in 0 peak:
me
S. Elliott, P. Vogel, Ann. Rev. Nucl. Part. Sci. 2002
Signal/Background:

S 1 T12/ 2

 433
0
B F T1/ 2
T12/ 2  3.2 1019 yrs
T10/2  21026 yrs
+ Tracking option
The 2x2 prototype
Setup installed at Gran Sasso Underground Laboratory
4 naked 1cm3 CdZnTe
more than 2.5 kg x days of data
Neutrons
Worry (if not enriched in
116Cd): 113Cd
(nth,)114Cd
MCNP simulation of the full set-up
Calibration
2.4% energy resolution at 2614 keV
Much better ones available
A little bit of cooling helps
Comparison of measurements
0.5 cm3, surface, no shielding
„old“ prototype, LNGS, no shielding
„old“ prototype, LNGS, shielding, no veto
The background model
Input: Pertinax (grid, base), detectors, paint and copper
Currently limiting background: Passivation paint on detectors
Strategies
• We started a long term R&D with eV-Products to
find another passivation (they have alternatives)
• Alternative providers not using the paint
(Freiburg Material Research Centre)
Redesigned prototype
Scalable design for larger masses Delrin holder and kapton foil
New versus old prototype
Measuring time: 2630 hours , about 0.71 kg x days, Det1 only
Physics 113Cd
113Cd
one of only three 4-fold forbidden -emitters known in nature
T1/2 = (8.2 ± 0.2 (stat.) +0.2-1.0 (sys)) 1015 yrs
C. Goessling et al., nucl-ex/0508016, acc. by Phys. Rev. C
First results
H.Kiel, D. Münstermann, K. Zuber, Nucl. Phys. A 723,499 (2003)
0
NPA 723 Current
70Zn
1.3 x 1016
2.9x1017
116Cd
8.0 x1018
1.1x1019
130Te
3.3x1019
8.2x1019
EC-modes
NPA723
Current
106Cd
0+
EC
3.8x1017
1. 6x1018
64Zn
0+
EC
2.8x1016
2.6x1017
120Te
0+EC 2.2x1016
9.3x1016
Current results are preliminary
T1/2 close to 1020 years obtained
Coincidences
Aim: Coincidences among crystals should significantly reduce
gamma background
2614 keV gamma (MC)
2000keV
1
30
0.9
25
0.8
0.7
20
0.6
y
0.5
15
0.4
10
About 0.2 % of
events are
coincidences
0.3
0.2
5
0.1
5
10
15
x
20
25
30
0
Array too small to prove power of coincidences  Larger Array
Contents
• Introduction
• Current status of
COBRA
• The 64 detector
array
• Longer term
planning
• Summary
The 64 detector array
Aim for next 2 years: The next step towards a large scale experiment,
Scalable modular design, explore coincidences
Mass is factor 16 higher,
about 0.5 kg CdZnTe
All detectors are at Dortmund
Include:
Cooling
Nitrogen flushing
Physics:
- Can access
2ECEC in theoretically
predicted region
-Precision measurement
of 113Cd
- New limits
Signatures - +/EC
High granularity

A lot of patterns,
interesting to
investigate
Contents
• Introduction
• Current status of
COBRA
• The 64 detector
array
• Longer term
planning
• Summary
The solid state TPC
Introduce tracking properties by using segmented
or pixellated electrodes and pulse shape analysis
Single electron spectra
Angular correlation
coefficient 
First own measurements
Two detectors:
4x4 pixel , 2mm x 2mm
16x16 pixel, 1.6 mm x 1.6 mm
Two pixel events
 -  plot
Source
location
Pixellated detectors
Solid state TPC
3D - Pixelisation:
Nobody said it was going to be easy, and nobody was right
George W. Bush
Back of the envelope
T1/2 = ln2 • a • NA• M • t / N (tT) ( Background free)
50 meV implies half-life measurements of 1026-27 yrs
1 event/yr you need 1026-27 source atoms
This is about 1000 moles of isotope, implying 100 kg
Now you only can loose: nat. abundance, efficiency, background, ...
Dimension it right!
Current idea: 40x40x40 CdZnTe detectors = 420 kg, enriched in 116Cd
A real time low-energy solar neutrino experiment?
e
e
116Cd
116In
Threshold energy: 464 keV
e
7Be contribution g.s. alone: 227 SNU
t = 14s
116Sn
K. Zuber, Phys. Lett. B 571,148 (2003)
Sensitivity
50 meV
Summary
• COBRA plans to use a large amount of CdZnTe
semiconductors for double beta searches
• Collaboration of about 25 people established
• Currently preparing a 64 detector array (about 0.5
kg), to be installed at LNGS end of 2005
• Design changed to allow easy upgrade to larger
scales
• Work on signal enhancer/active veto and
pixellated detectors has started
• Progress is fast
Einstein was right