Transcript Document
length scales of order and defects in nano-crystalline and non-crystalline Hf-based high/medium-k gate dielectrics Gerry Lucovsky, NC State University, Dept. of Physics students and post doc S. Lee, JP Long, H Seo and L Fleming collaborators J Whitten and D Aspnes (NCSU), J Lüning (SSRL), G Bersuker and P Lysaght (Sematech) and M Ulrich (ARO/NCSU) outline of presentation research objectives spectroscopic determination of band edge electronic structure conduction and valence band states intrinsic defects effects of nano-crystalline grain size on band edge states band edge defects an emerging medium-k non-crystalline on SiON/Si SiO2 look-alike!- tunneling reduced 102-103 at 1 nm EOT recent results Hf-based dielectrics directly on Ge substrates SiO2 look-alike - lowest tunneling leakage!! research objectives correlate electronic structure, pre-existing and stress-induced defects with different length scales of order nano-grain size and intermediate range order, respectively for nano- and non-crystalline Hf-based dielectrics answer this question!! is there a higher k dielectric with reduced leakage that has defect properties qualitatively and quantitatively similar to SiO2 and/or Si oxynitrides currently in CMOS device?? Glen Wilk and I once believed that the answer would be either a Zr(GL) or Hf(GW) silicate but we were both wrong!! they are unstable wrt to chemical phase separation, but the answer is YES!! relative d-state band energies, by NEXAS, SXPS, vis-VUV SE interpretation - symmetry adopted linear combinations (SALCs) of atomic states -- FA Cotton – 1962 monograph symmetry adopted linear combinations (SALC) of atomic states define molecular orbitals for 6-fold coordinated Ti conduction band and valence band states symmetry and bonding coordination of TM and O parentage of TM d-states in conduction band is easily resolved in NEXAS O K1 and SE, but valence band states are broader, but spectra are consistent with SALCs crystal-field (C-F) splitting symmetry and coordination dependent ~ 1.6 to 5 eV octahedral bonding of Ti with 6 O Ti NEXAS O K1 edge; SE O 2p UPS, SXPS valence band cooperative Jahn-Teller bonding distortions - TiO2 - anatase-like, monoclinic Hf(Zr)O2 - degeneracy removalJ-T term splittings Eg 2 states and T2g 3 states d[Eg (2)]~d[T2g (3)] ~ 0.5-1.2 eV comparison - nano-crystalline TiO2 near NEXAS and Symmetry Adopted Linear Combination (SALC) anti-bonding MO conduction band states 0.35 octahedral bonding of Ti with 6 O absorption (arb. units) O K1 TiO2 0.3 Ti 0.25 0.2 0.15 T2g(3) Eg(2) 3d5/2 * 525 3d3/2 * 530 535 A1g T1u 4s * 4p * 540 545 550 NEXAS O K1 edge; SE O 2p UPS, SXPS valence band X-ray photon energy (eV) Ti 3d, 4s and 4p atomic contributions distinct features in NEXAS O K1 consistent with group theory / SALC MO description SXPS deconvolution of valence band spectrum O 2p non-bonding, Ti 3d -states, Ti 3d, 4s and 4p -states and band edge defect doublet octahedral bonding of Ti with 6 O TiO2 60 eV photoelectron counts 104 3d5/2 T2g 1000 Ti3+ defect 0 2 3d3/2 Eg Ti 4p T1u O2p nb 4 4s A1g d2p3s 6 8 10 nb 12 binding energy (eV) 14 16 ordering of valence band states -- ---, etc... NEXAS O K1 edge; SE O 2p UPS, SXPS valence band 8 10 TiO2 expsilon 2 7 T2g 1 Eg defect states TiO2 - VUV SE S Zollner, D Tryoso epsilon 2, 2 (eV) imaginary part of dielectric constant (2) relative d-state energies of final conduction band states from NEXAS and spectroscopic ellipsometry 6 y = -524.86 + 0.99661x R= 0.98362 5 4 0.1 2 3 4 5 6 photon enegy (eV) 7 8 3 529 530 531 532 533 534 535 OK1 photon energy (eV) NEXAS -- equivalent to vis-VUV SE for IVB, IIIB TM oxides wrt energy differences of conduction band d-states NEXAS faster and more direct can also be applied to ultra-thin dielectrics for devices (~2 nm ) O K1 edges of 900°C Ar annealed ZrO2 and HfO2 on Si with SiON interfaces - film thickness > 4 nm Eg 4d3/2 absorption (arb. units) 0.8 O K1 T2g 4d5/2 0.7 0.6 ZrO2 Eg 5d3/2 5s 5p T2g 5d5/2 7-fold coordinated in monoclinic structure sd3p3 SALC* MO labeling pseudocubic (8-fold) asymmetry in ZrO2, and features in HfO2 J-T degeneracy removal 0.5 6s 0.4 HfO2 6p Eg (T2g + A1g + T1u) 0.3 528 532 536 540 X-ray energy (eV) 544 7-fold coordinated Hf- black in HfO2 5d3 + 6s1 + 6p3 = 7- states sd3 - tetrahedron - p3 - pyramid - band edge defects in HfO2 and ZrO2 - films > 4 nm thick vis-VUV SE SXPS 4.5 SXPS VB 60 eV HfO2 HfO2 4 900oC anneal 3 photoelectron counts expsilon 2 (2) 3.5 Eg Hf 5d3/2 2.5 2 1.5 1 2 band edge defect states Eg Hf 5d3/2 104 7 -bonds 5d35/2 + 6s1 + 6p3 T2g + A1g + T1u defect states 1000 2 -bonds 5d3/2 Eg 0.5 4.5 5 5.5 6 6.5 7 7.5 8 0 2 4 6 8 10 12 14 16 binding energy (eV) photon energy (eV) 2 discrete defect states below conduction band edge 2 discrete defect states above valence band edge defect features in X-ray, visible, UV, VUV enhanced by f-sum rule energy level diagram for band edge defects from NEXAS, vis-VUV SE and SXPS spectra for HfO2 same diagram - reduced band gap, 5.5 vs 5.7 eV for ZrO2 7 6 HfO 2 conduction band energy (eV) 5 electron traps XAS, SE 4 3 2 hole traps SXPS 1 0 HfO 2 valence band -1 0.001 0.01 local density0.1of states 1 films are O-deficient - mixture of HfO2 (Hf4+) and Hf2O3 (Hf3+) defects described by clustered O-atom vacancies or equivalently Hf3+ states clustered at internal grain boundaries for nano-grains > 4 nm diagram verified by cathodo-luminescence CLS results cathodo-luminescence spectra CLS electrons in - keV’s - photons out from defect transitions Brillson group at Ohio State University 7 HfO2 104 6 Eb = 4 keV 1000 2, 6 2.7 eV 4 100 3.4 eV HfO2 CB Edge (cb) D(cb)1 5 energy (eV) CL instensity (arb. units) 900oC RTA 4.2 dV 4 3 D(cb)2 1 2 3 2 5 6 7 a D(vb)1 Gaussian fits 1, 5 4 1 a 0 D(vb)2 Edge (vb) 5.5 eV 3, 7 HfO2 VB -1 10 2 3 4 5 photon energy (eV) deconvolution of spectrum for bulk excitation in thick HfO2 6 local density of states mapping of Gaussians onto edge states - SXPS, SE, XAS band edge defect spectral features ZrO2 XAS, VUV SE, PC absorption constant (cm-1) 0.8 0.7 0.65 0.6 105 defect absorption optical gap ~5.5 eV 0.47 0.4 528 0.46 T2g (4d5/2) state 104 3 gaussian fit d-state bands ZrO2 530 532 534 536 538 540 542 0.45 O-atom defect vacancy state 0.43 0.42 0.41 0.4 528 529 530 5 6 7 8 9 4000 photon energy (eV) Eg (4d3/2) 0.44 4 photon energy (eV) (arb. units) 0.5 O-atom defect Eg (4d3/2) vacancy Eg (2) VUV SE 0.55 0.48 0.45 absorption (arb. units) gaussian fit d-state bands ZrO2 O K1 T2g (1 of 3) [photoconductivity]1/2 absorption (arb. units) 0.75 nc-ZrO2 B. Rogers, S. Zollner 106 531 532 533 photon energy (eV) 534 535 3500 ZrO2 V.V. Afanas'ev A. Stesmans Eg band edge feature 3000 2500 2000 1500 band edge "defect state" negatively charged O-atom vacancy PC 1000 500 0 4.5 5 5.5 photon energy (eV) 6 6.5 correlations between grain-size and defects nano-scale of order, lcoh (-bonding) ~3-3.5 nm for Hf(Zr)O2 suppression of Jahn-Teller d-state degeneracy splittings when grain size </~ 2 nm length scale factor for inter primitive unit cell (PUC) coupling coherence of -bonding - analog to super exchange in MnO Mn spins in adjacent PUCs coupled thorugh O’s -bonding couples metal atoms, M, in neighboring PUCs through their nearest neighbor O-atoms PUC 1 2 3 primitive unit cells (PUCs) 1/nO-Hf-O1/n (n=3, 4) labeled as 1, 2 and 3 -bonding orbitals phase reversal of 2nd nearest neighbor O-atoms alternating phase of 2nd M-atoms (same phase reversing as for spins in A-F MnO) length scale, lcoh, for J-T splitting ~ 6-7 PUCs or ~3-3.5 nm for coherent -bonding effects kinetic and dimensional constraints suppress Eg - -bond state J-T splittings in O K1 edge spectra 0.45 O K1 HfO2 4 nm absorption (arb units) 0.4 A1g 0.35 T1u 3 nm 0.3 2 nm Eg 0.25 0.2 528 530 532 T2g 534 536 538 540 542 544 x-ray photon photonenergy energy(eV) (eV) X-ray kinetic as-dep. 300°C, 500 °C anneal no J-T splitting 700°C, 900°C anneals J-T splitting “dimensional” 2 nm thick film no J-T splitting 3 and 4 nm thick films J-T splitting differences in band edge defects in HfO2 discrete states and sharp NEXAS edge for tphy > 3nm, band tail defects and softer edges for tphys ~ 2 nm 0.45 O K1 HfO2 A1g 0.35 T1u 3 nm 0.3 2 nm Eg 0.25 0.2 528 530 532 T2g 534 536 photoelectron counts 4 nm 0.4 absorption (arb units) SXPS 60 eV HfO2 4 nm 104 defects 2 nm 1000 -5d3/22 -5d5/23 + 6s1 + 6p3 538 540 542 544 x-ray photon photonenergy energy(eV) (eV) X-ray softer edge for tphys = 2 nm compared to tphys = 3, 4 nm 100 0 5 10 15 normalized bonding energy (eV) band tail defects - tphys = 2 nm discrete defects - tphys = 4 nm differences in band edge defects for kinetic constraint 700 oC 300 oC band edge defect states 5d3/2 Eg 5.5 5 1000 band tail states 100 40 42 44 46 48 50 52 54 56 soft x-ray photon energy (eV) absorption (arb. units) 104 HfO2 6 nm OK1 4.5 4 3.5 3 900oC 700oC 500oC 5.5 HfO2 6 nm OK1 5 absorption (arb. units) photoelectron counting rate HfO2 4 nm VB spectrum 2.5 5d3/2 Eg 6p 535 540 545 x-ray photon energy (eV) 300, 500°C suppression J-T and broader features wrt 700&900°C 300°C band tail defect at VB edge discrete defects after 700°C anneal 3.5 900oC 700oC 500oC 2.5 6s 300oC 530 4 3 5d5/2 T2g 2 slope 1.4 4.5 5d3/2 Eg slope 1.0 300oC 2 530 531 532 533 534 535 x-ray photon energy (eV) to obtain electrical defect densities, must apply f(N) sum rule matrix element enhancement, ~ 50-100x for discrete defects electrical properties in HfO2 MOSCAPs with discrete band edge defects (tphys > 4 nm) C-V and J-V measurments Si-SiO2-HfO2 gate stacks Massoun et al., APL 81, 3392 (2002) Z. Xu et al., APL 80, 1975 (2002) substrate injection holes substrate injection electrons gate injection electrons traps are in high-k material of stack 2x1013 cm -2 -- ~ 1.5x10-17 cm-2 coulombic center - lower x-section than Pb centers in Si substrate screened by high dielectric constant of HfO2 electron trap ~0.5 eV below conduction band edge HfO2 J-V asymmetry - IMEC model continuity of E - (SiO2) ~ 3.9 < (HfO2)~20 asymmetry in potential distribution across stack traps accessible for injection from n-type substrate using midgap gate metal - TiN traps not accessible for injection from mid-gap metal -- TiN from M. Houssa, IOP, Chapter 3.4 Lucovsky group NCSU 0.01 0.001 >500x >1000x 0.0001 current (A) >500x substrate electron injection n-Si into SiO2/HfO2 F-P hopping DE~0.5 eV < CB HfO2 10 -5 10 -6 20x 200oC 25oC 10-7 10-8 10-9 0 0.5 1 1.5 2 2.5 gate voltage (V) 1.0 10-6 substrate hole injection n-Si into SiO2/HfO2 interface EOT~1.7 nm capacitance (F-cm-2) EOT~7 nm 8.0 10-7 6.0 10-7 10 khz 4.0 10-7 100 khz 1 Mhz 2.0 10-7 -1 -0.8 -0.6 -0.4 -0.2 gate voltage (V) C-V -- surface potentials of Si substrate are negative!! hole injection 0 intrinsic band edge defect states grain-boundary defects – suboxide bonding - trivalent Hf3+ ~/>5x1018 cm-3 - ~/>3x1012 cm-2 clustered on grain boundaries 0.01 7 0.001 HfO2 conduction band 5 electron traps XAS, SE 4 20x 10-5 trap-assisted transport of electrons through empty states 200oC 10-6 25oC 10-7 10-8 3 10-9 2 1 0 0.5 1 1.5 2 2.5 gate voltage (V) 1.0 10-6 occupied hole traps SXPS 8.0 0 HfO2 valence band 0.01 local density0.1of states 10-7 EOT~1.7 nm hole trapping into partially-occupied states 6.0 10-7 -1 0.001 capacitance (F-cm -2) energy (eV) empty >500x >1000x 0.0001 current (A) 6 1 band edge and paired band edge defects in HfO2 10 khz 4.0 10-7 100 khz 1 Mhz 2.0 10-7 -1 -0.8 -0.6 -0.4 gate voltage (V) -0.2 0 electrical properties in Hf Si oxynitride MOSCAPs electrical measurements and X-ray stress O1s - d(intensity)/dE (a.u.) (ZrO2)0.42(SiO2)0.42 (Si3N4) = 0.16 SiO2 Zr (also Ti, Hf) Si oxynitrides extends EOT to ~0.7-0.8 nm ZrO2 ZrO2 o 1000 C RTA high Si3N4 content Zr(Hf) Si oxynitrides stable against chemicalseparation 0.0 1.0 o 900 C RTA 0.2 0.8 as-deposited 0.4 538 536 534 532 530 528 binding energy (eV) 0.6 low Si3N4 content Zr(Hf) Si oxynitrides chemicallyseparate O1s - d(intensity)/dE (a.u.) 0.6 0.4 0.8 1.0 0.0 0.2 0.2 0.4 0.6 0.0 1.0 0.8 Si3N4 SiO2 (ZrO2)0.3(SiO2)0.3 (Si3N4) = 0.40 o o 900 C RTA as-deposited 536 534 Cav (0.33,0.33,0.33) = 2.9 Cav (0.30,0.30,0.40) = 3.2 intermed. phase Si3N4 0.33-0.4 fraction strained [SiN4/3]~0.20 below strain percolation limit however -relative concentration of Hf/Si ~ 16% suggests a percolation of the low Cav B' H' N' B 1000 C RTA 538 tetrahedrally-bonded Zr to O encapsulated in Si-N cages 532 530 binding energy (eV) 528 phase-separated Zr/Hf silicates 20 % SiO2 SiO2 "islands" encapsulated by connected Zr/HfO2 grains limits Zr/HfO2 grain size 5 nm SiO2 is black 55-65% SiO2 SiO2 partially encapsulates Zr/HfO2 is white/grey Zr/HfO2 grains 75% SiO2 SiO2 encapsulates Zr/HfO2 grains O K1 XAS spectra same before and after 900°C anneal 2nd derviative absorption (arb. units) 0.3 ZrSioxynitride annealed 0.25 oC Si3N4 900 absorption (arb.units) 0.35 0.2 as-deposited non-crystalline 0.3 0.1 0.25 0 E T2 -0.1 0.2 900oC anneal 3N4)0.4(ZrO2)0.3 D(SiO E2g2)0.3(Siphase-separated 1.0 eV nanocrystalline ZrO2 -0.2 0.15 -0.3 530 530 535 532 540 534 536 545 photon energy (eV) photon energy (eV) 538 550 540 2nd derviative absorption (arb. units) because of overlap of O, N features in O K1 with Zr d-states must extract slitting by differentiation D E()-T 2() 2.2 eV Eg-Tg = 2.2DeV 0.15 ZrSioxynitride 0.4 Si3N4 0.1 900oC anneal 0.05 0 as-deposited -0.05 no CPS -0.1 530 532 534 536 538 540 photon energy (eV) cubic zirconia (Y2O3 alloy) D E() - T2g() = 4.8 eV ratio = 2.2±0.3 eV ~ = 8/4 = 2 0.4 analysis of spectral data N-Si-O N Si O Zr order of bonding Zr-O-Si-N "viewed" from O in O K1 and N in N K1 Cav ~ 3.0 due to chemical ordering/broken constraints on Si Si-O O-Si-N 0.3 0.25 Si-O-Zr 0.2 0.15 0.1 532 534 536 538 540 542 544 546 x-ray photon energy (eV) 0.25 0.24 absorption (arb units) cavity 0.35 absorption (arb units) tetrahedrally-bonded Zr (Ti,Hf) in high Si3N4 Si oxynitrides ls ~1 nm O K1 Zr SiON N K1 Zr SiON N-Si-O N-Si 0.23 0.22 N-Si-O-Zr 0.21 0.2 0.19 0.18 398 400 402 404 406 408 x-ray photon energy (eV) 410 105 16% Si3N4 occupied defects hole traps 40% Si3N4 consistent with high level of defects observed in C-V trace Ti Si oxynitrides as-deposited SXPS 60 eV 104 1000 2 4 6 8 10 12 16% Si3N4 alloy shows high defect level alloy spectroscopically 14 energy (eV) 40% Si3N4 alloy shows sharper valence band edge and lower defects spectroscopically consistent with high level of defects observed in C-V trace normalized capacitance, C/Cox counting rate (arb units) 106 1.1 1 Hf Si oxynitrides (a): 40% Si3N4 (b): 18% Si3N4 0.9 (a) 40% Si3N4 Vfb = -0.026+/-0.03 V (b) 18% Si3N4 Vfb = 0.035+/-0.03 V 0.8 0.7 DVfb= -0.06+/-0.005 eV 0.6 0.5 Qif = 0.5+/-0.05x10-12 cm-2 (b) (a) 0.4 -1.5 -1 -0.5 0 0.5 1 gate voltage (V) 1.5 2 0.7 normalized capacitance, C/Cox spectroscopic detection of defects by soft X-ray XPS valence band spectroscopy 0.65 Hf Si oxynitrides (a) 40% Si3N4 (b) 18% Si3N4 0.6 0.55 (b) 10 kHx to 1 MHz DV= 0.14 eV dit = 1.1x10-12 cm-2 0.5 (a) 0.45 -1 100 kHx and 1 MHz -0.8 -0.6 -0.4 gate voltage (V) -0.2 J-V measurements sharp minimum in gate leakage, direct tunneling consistent with low level of trap-assisted tunneling gate leakage current (A-cm-2) 0.001 measurements at VU have demonstrated ii) only positively charged defects by X-ray stressing iii) rate of defect level generation approximately same as SiO2 0.0001 10-5 (e) 10-6 (a) (b) (c) 10-7 10-8 0.5 (d) 1 1.5 Vg-Vfb (V) 2 2.5 10-5 reduced gate leakage current (A-cm-2) i) defect levels in 40% alloy films comparable to SiO2 Hf Si oxynitrides (a) 18%, (b) 25%, (c) 30% (d) 40%, (e) 58% Si 3N4 (e) (a) (b) 10-6 (c) 10-7 Hf Si oxynitrides (a) 18%, (b) 25%, (c) 30% (d) 40%, (e) 58% Si 3N4 10-8 (d) 10-9 0.1 0.2 0.3 0.4 0.5 Si3N4 content (fraction) 0.6 preview radiation induced defects (DK Chen, VU, later in program) low Si3N4 high Si3N4 D(Vfb) vs stress time for high/low Si3N4 H SiON with Vg = 1.5 V injected charge 104 s ~7 x 1015 C/cm2 these plots indicate improved performance of high Si3N4 HfSiON wrt i) low Si3N4 HfSiON, and ii) Hf silciates high Si3N4 Hf silicates total-dose-induced midgap voltage shifts DVmg's for high Si3N4 HfSiON compared with larger DV's for Hf silicates HfO2 and TiO2 on Ge – no detectable Ge-N interfacial transition regions approach resonant atom-specific near edge X-ray absorption spectroscopy (NEXAS) and vis-UV spectroscopic ellipsometry O K1 spectra MO anti-bonding states with Hf, Ti d, s and p contributions - 2 to 6 nm thick films N K1 spectra “buried” nitrided interfaces between Si (SiON) and Ge (Ge-N) and HfO2 and TiO2 as function of process temperature comparisons O K1 and vis-UV SE emphasis of differences/process induced changes in band edge defects Ge(100) and Ge(111) buried interface studies - resonant atom-specific near edge X-ray absorption spectroscopy (NEXAS) resonant photoemission for O-Hf, O-Ti anti-bonding states O K1 525-555 eV X-rays HfO2 or TiO2 HfO2 or TiO2 SiON GeN Si substrate Ge substrate resonant photoemission for Ge-N, Si-N anti-bonding states N K1 395-425 eV X-rays HfO2 or TiO2 HfO2 or TiO2 SiON GeN Si substrate Ge substrate HfO2 and TiO2 films are "transparent" to N K1 X-rays and to decay products after x-ray excitation N K1 spectra - remote plasma assisted nitridation of Ge (100) (a) Ge substrate nitridation for all Ge samples (b) buried interfaces for 2 nm and 6 nm thick HfO2 films after 800C anneal. 0.146 3.6 N K1 edge Ge (100) (a) 3.5 absorption (arb. units) absorption (arb. units) 0.144 0.142 0.14 0.138 0.136 395 6 nm HfO2 3.4 800oC anneal 3.3 3.2 2 nm HfO2 800oC anneal 3.1 400 405 410 X-ray photon energy (eV) strong N-feature for all buried asdeposited interfaces 415 (b) N K1 edge Ge (100) 3 395 400 405 410 X-ray photon energy (eV) no N-feature after 800C anneal - for both 2 & 6 nm 415 O K1 spectra for HfO2 on Ge(100) with Ge-N interface as-deposited at 300C - after an 800C 1 min anneal in Ar (a) 2 nm thick O K1 edge Ge (100) (a) 5d5/2 T2g 4 3.6 5d3/2 Eg 3.2 2 nm HfO2 800oC anneal 6s A1g 6p T1u 2.8 2.4 2 nm HfO2 as-deposited 2 1.6 530 5 535 540 X-ray photon energy (eV) 545 absorption (arb. units) absorption (arb. units) 4.4 (b) 6 nm thick 4.5 4 3.5 (b) O K1 edge Ge (100) 5d5/2 T2g 5d3/2 Eg 6 nm HfO2 800oC anneal 6s A1g 6p T1u 3 2.5 2 530 6 nm HfO2 as-deposited 535 540 X-ray photon energy (eV) broad, but different spectra as-deposited -- no J-T Eg splitting similar sharp spectra after 800C anneal -- J-T Eg splitting 545 O K1 spectra for HfO2 on Si(100) with SiON interface as-deposited at 300C - after a 900C 1 minute anneal in Ar (a) 2 nm (b) 6 nm 5 2.4 900oC anneal (a) 4.5 5d5/2 T2g 2 1.8 6s 1.6 6p as-deposited 1.4 1.2 1 530 5d3/2 Eg 535 540 X-ray photon energy (eV) absorption (arb. units) absorption (arb. units) 2.2 O K1 edge 2 nm HfO2 SiON-Si O K1 edge 6 nm HfO2 SiON-Si 4 (b) 5d5/2 T2g 3.5 3 900oC anneal 6s 5d3/2 Eg 6p as-deposited 2.5 545 no J-T degeneracy removal some sharpening after anneal dimensional constraint > kinetics 2 530 535 540 X-ray photon energy (eV) 545 J-T degeneracy removal after 800C anneal kinetic constraint - as-dep 2 nm thick TiO2 on Ge(100) as-deposited at 300C after an 800C 1 minute anneal in Ar (a) N K1 spectra (b) O K1 spectra. 4 1.08 1.04 3.5 absorption (arb. units) absorption (arb. units) 1.12 as-deposited 300oC 800oC anneal 1 0.96 N K1 edge - 2 nm TiO2 plasma-nitrided Ge (100) 3 2.5 2 1.5 400 405 410 X-ray energy (eV) as-deposited 300oC hwhm ~1 eV 1 0.5 395 annealed 800oC hwhm ~0.5 eV 415 nitrogen removal - 800C anneal same effect as for HfO2 films also for N-loss for 6 nm TiO2 O K1 2 nm TIO2 Ge (100) 530 535 540 545 X-ray photon energy (eV) 550 spectral changes - 800C anneal features sharper - edge hwhm hwhm on SiON ~0.7 eV comparison of O K1 spectra for HfO2 5.5 absorption (arb. units) 5 O K1 edge 6 nm HfO2 4.5 4 in contact with noncrystalline SiON interfacial transition region on Si Ge 800oC 5d5/2 Eg 5d5/2 T2g 6s 3.5 6p SiON-Si 900oC 3 2.5 530 535 540 X-ray photon energy (eV) HfO2 SiON Si substrate 545 in direct bonding contact with Ge after elimination of Ge-N interfacial transition region significant Eg differences qualitatively different -bonding Hf-O-Hf-O...... HfO2 Ge substrate changes in absorption (bottom) are qualitatively the same as changes in CLS (top) HfO2 1000 CL instensity (arb. units) CL instensity (arb. units) 900oC RTA Eb = 4 keV 100 2.7 eV 3.4 eV HfO2 104 as-deposited 300oC 4.2 dV Gaussian fits comparisons between 2 of HfO2 and TiO2 and CLS response Eb = 4 keV 1000 2.7 eV 3.4 eV 4.2 dV Gaussian fits 100 5.5 eV 5.1 eV 10 10 2 3 4 5 2 6 3 4 5 6 photon energy (eV) photon energy (eV) 5 0.5 HfO2 on GeN as-deposited 300oC 0.45 HfO2 on Ge annealed 800oC 4 defect states D(vb)2-D(cb)2 epsilon 2 (2) epsilon 2 (2) vb-D(cb)1,2 0.4 0.35 0.3 3 vb-D(cb)2 2 D(vb)2-D(cb)2 vb-D(cb)1,2 D(vb)1-D(cb)2 0.25 open circles Ge(100) filled circles Ge(111) 1 0.2 2 2.5 3 3.5 4 4.5 photon energy (eV) 5 5.5 3 3.5 4 4.5 photon energy (eV) 5 5.5 as-deposited on GeN with interfacial transition layer and after 800°C indirect bonding contact on Ge(100) and Ge(111) surfaces 5 0.5 HfO2 on GeN as-deposited 300oC 4 defect states vb-D(cb)1,2 0.4 D(vb)2-D(cb)2 epsilon 2 (2) epsilon 2 (2) 0.45 HfO2 on Ge annealed 800oC 0.35 0.3 3 vb-D(cb)2 vb-D(cb)1,2 D(vb)1-D(cb)2 open circles Ge(100) filled circles Ge(111) 2 D(vb)2-D(cb)2 0.25 1 0.2 2 2.5 3 3.5 4 4.5 5 3 5.5 3.5 photon energy (eV) 4 4.5 photon energy (eV) 5 5.5 as-deposited on GeN with interfacial transition layer and after 800°C indirect bonding contact with Ge on both Ge(100) and Ge(111) surfaces qualitatively similar changes – as-deposited to annealed 800°C 10 TiO2 on Ge annealed 800oC open circles Ge(100) filled circles Ge(111) 1 epsilon 2 (2) epsilon 2 (2) TiO2 on GeN 10 as-deposited 300oC T2g open circles Ge(100) filled circles Ge(111) 1 defect states T2g 0.1 0.1 vb-D(cb)1 vb-D(cb)1 vb-D(cb)2 2.5 3 3.5 4 4.5 5 photon energy (eV) vb-D(cb)2 5.5 6 2.5 3 3.5 4 4.5 5 photon energy (eV) comparisons between 2 of HfO2 and TiO2 5.5 6 preliminary results first try I-V for HfO2 and Hf SiON on Ge after anneal physical thickness ~ 2nm nominal nrea ~ 0.50E-4cm 2 0.001 HfO2 0n Ge (111) HfO2 0n Ge (100) 20-30x 0.0001 current (A) ~10x 10-30x lower tunneling than for HfO2 Hf SiON better dielectric even though keff is smaller by ~1.5-2 Eb and m*e are larger Hf Si oxynitride 10-5 10-6 0 0.5 1 voltage (V) 1.5 difference between Ge(111) and Ge(100) for HfO2 higher Ge(111) symmetry more column-like growth habit more leakage checking by TEM 2 Jdt = ~exp(-ak[Eb me*]0.5) summary of experimental results length scale, lcoh - coherent Hf d – O p -bond inter-PUC coupling 5.5 HfO2 6 nm OK1 nano-crystalline thin films 1.1 phaseseparated Hf silicates 80% HfO 2 1.08 1.04 1.02 3.5 900oC 500oC 4.5 3.5 slope 1.0 300oC 3 0.5 1 1.5 2 2.5 3 3.5 Eg Hf 5d3/2 2 1.5 4 length scales, ls J-T splitting 1.2 eV 2.5 1 0.98 0 HfO2 4 900oC anneal thin films bond-lengths, bond-angles 0.15-0.35 nm 1 700oC 2 530 < 700oC chemical bonding Hf Si self-organizations oxynitrides 0.6 to 0.8 nm rings of bonded atoms non-crystalline 0.4 - 0.6 nm 4 2.5 type II tphys >3 nm Tproc >/=700oC 5d3/2 Eg 4.5 3 type I tphys <2 nm Tproc 1.06 slope 1.4 type II lcoh > 3 nm or > 6 PUCs J-T splittings and discrete band-edge defects 1.12 2 band edge defect states Eg Hf 5d3/2 0.5 106 531 532 533 534 535 x-ray photon energy (eV) Hf Si oxynitrides- high Si3N4 % no inter-group Hf d-O p-bonding no phase-separation, but only for small range of compositions very low tunneling, ~12 (to 16-18) counting rate (arb units) absorption (arb. units) 5 asymmetric h/e trapping +/- defects X-ray stress expsilon 2 (2) phase-sep. silicates and type I lcoh ~ 2 nm or < 5 PUCs no J-T splittings and band-tail defects 105 16% Si3N4 occupied defects hole traps 4.5 5 5.5 6 6.5 7 7.5 8 photon energy (eV) 40% Si3N4 Ti Si oxynitrides as-deposited SXPS 60 eV 104 1000 2 4 6 8 10 energy (eV) 12 14 positive charge defects - X-ray stress HfO2 and Hf silicates both positive/negative charged defects direct bonding on Ge(100/111) electricals being studied and measurements extended to Ge(111) HfO2 or TiO2 absorption (arb. units) 1.12 1.08 HfO2 or TiO2 SiON GeN/GeO Si substrate Ge substrate resonant photoemission for Ge-N, Si-N anti-bonding states N K1 395-425 eV X-rays as-deposited 300oC 1.04 resonant photoemission for O-Hf, O-Ti anti-bonding states O K1 525-555 eV X-rays HfO2 or TiO2 800oC anneal HfO2 or TiO2 SiON GeN/GeO Si substrate Ge substrate 1 N K1 edge - 2 nm TiO2 plasma-nitrided Ge (100) 0.96 395 400 405 410 X-ray energy (eV) 415 GeO and GeN removed during anneal substrate specific -bonds Ge (100/111) resonant X-rays reveal buried interface SiON interface Ge-direct different T2g 10 5.5 4.5 4 5d5/2 Eg 5d5/2 T2g 6s 3.5 6p SiON-Si 900oC physical thickness ~ 2nm nominal area ~ 0.50E-4 cm-2 0.001 open circles Ge(100) filled circles Ge(111) 1 defect states 0.0001 current (A) Ge 800oC epsilon 2 (2) absorption (arb. units) 5 TiO2 on Ge annealed 800oC O K1 edge 6 nm HfO2 T2g 0.1 10-5 annealed HfO2/Ge(100) annealed HfO2/Ge(111) annealed HfSiON/Ge(100) 3 2.5 530 10-6 535 540 X-ray photon energy (eV) 545 2.5 3 3.5 4 4.5 5 photon energy (eV) 5.5 6 0 0.5 1 gate voltage (V) 1.5 2 plans for next year comparisons of HfO2 and ZrO2 with different length scales on Si/SiON and Ge substrates Ge work with include deposition of in-situ homo-epi Ge on Ge to improve surface quality and hetero-epi of Ge on Si, and GaAs NEXAS, SXPS and SE spectroscopy J-V and C-V compare electrical stress SILC and N and PBTI with x-ray stress i) d-state electronic structure of elemental TM oxides symmetry adopted linear combinations (SLACs) of atomic orbitals – FA Cotton, 1962 text ii) conduction band or anti-bonding states in NEXAS same relative energies as in vis-VUV SE iii) band edge defects in SXPS, NEXAS and SE matrix element enhancement of 50-100 - N-sum rule 0.5 eV widths compared with 24-40 eV for band to band iv) d-state degeneracies suppressed - nano-grains < 3 nm, band edge defects are changed from discrete states to band tails and defects reduced > 20-50x defect densities as low as mid-1011 cm-2 band tails - asymmetric - like discrete states possible show stopper for CMOS -- different NBTI and PBTI's v) dielectrics that work Hf Si oxynitrides, high Si3N4 stable to 1100 C, compatible with poly Si (Si,Ge) gates defects and defect precursors ~ same as SiO2, very low tunneling current, k's to 16-18 are possible in Hf,Ti Si oxynitrides