Transcript Document

®

Биметалл и металлопрокат для

Bimetal and metal products for mechanical engineering

EPNM-2012

Energometall Inc.

St.Petersburg, Russia V.S.Vakin

Explosive Welding of Steels with Al-Mg and Ti Alloys: Comparative Analysis Сравнительный анализ сварки алюминиево магниевых и титановых сплавов и сталей

Previous Conclusions

1. In case of direct joining of AlMg6, bonding strength of this joint is achieved due to an intermetalic interlayer, and high homogeneity of such joint depends on thickness of this interlayer.

2. In case of direct joining of AlMg6 covered with pure Aluminum, bonding strength of this joint is achieved due to this covering layer, which is presented in a tempered condition.

3.

The difficulty in obtaining of a joint of AlMg6 with carbon or stainless steel is explained by a considerable difference in heating temperatures of each layer and by a considerable difference in the speed rate of heat transfer between the layers.

4. In order to obtain an appropriate bond of AlMg6 and steel on a sufficient area, it is necessary to use an interlayer which should be a ductile material of the sufficient heat conductivity.

5. Practical value of the direct joint of AlMg6 and steel for the wide industrial application is not evident.

Tear test of cladding layer for combination AISI321+AlMg6 Parameters Preload Testing rate Results Fmax F, at distruction point Statistics Fmax F, at distruction point

Shear test of bi-metal for combination AISI321+AlMg6 Parameters Preload Testing rate Results Fmax F, at distruction point Statistics Fmax F, at distruction point

Localization of Intermetallics in the Peripheral Part of Bi-metal Plate AlMg6-Steel Локализация интерметаллидов в периферийной части биметаллического листа AlMg6-сталь

Formation of Local cracks in the Peripheral Part of Bi-metal Plate AlMg6-Steel Образование локальных трещин в периферийной части биметаллического листа AlMg6-сталь

Increase of Local Cracks in the Peripheral Part of Bi-metal Plate AlMg6-Steel Укрупнение локальных трещин в периферийной части биметаллического листа AlMg6-сталь

Characteristics for Titanium alloy grade PT-3V ( ПТ-3В) Chemical composition in % for grade PT-3V ( ПТ-3В ) Fe C Si V N Ti Al Zr O H Impurity max 0.25

max 0.1

max 0.12

1.2 - 2.5

max 0.04

91.39 95 3.5 - 5 max 0.3

max 0.15

max 0.006

other 0.3 Mechanical properties under Т=20 o С for grade PT-3V (ПТ-3В) Assortment Dimension Direct.

Plate ,

GOST 23755-79

mm

11 - 26

s в MPa 835-880 s T MPa d 5 % 10 y % 22-25 KCU kJ / m 2 Heat treatment 600 Annealing

Tear test of cladding layer for combination Titanium PT3V + 09G2S Испытания на отрыв плакирующего слоя PT3V + 09G2S 2 3 4 5 Nr 1 Results

F max

MPa 316

F, at distruction point

MPa 315 185 242 277 250 185 235 266 250 Statistics

Series F max F, at distruction point

n=5 x s n MPa 254 48,3 19,03 MPa 250 47,3 18,91

Shear test of cladding layer for combination Titanium PT3V + 09G2S Испытания на срез биметалла Titanium PT3V + 09G2S Nr 1 2 3 4 5 6

F макс

MPa 513 478 510 457 506 434

F при разрушении

MPa 89,2 488 408

Serie

n = 6 x s n

F макс

MPa 483 32,2 6,66

F при разрушении

MPa 329 211 64,25

PT3V-Steel Gr.1-Steel ВТ1-0 –Steel («PROMETEI»)

Macrostructure of a Single Wave of Combination PT3V-Steel Микроструктура единичной волны соединения PT3V-сталь

Zones with Intermetallics Inside of a Single Wave of Combination PT3V-Steel Зоны интерметаллидов внутри единичной волны соединения PT3V-сталь

Project 1 Project: Project 1 Owner: INCA Site: Site of Interest 1 Sample: Sample 1 Type: Default ID: Label : WD Data 49 Acquistion conditions : kV = 20.0

Tilt = 0.0 degs Azimuth = 0.0 degs Elevation = 30.0 degs Effective take off angle = 30.0 degs Processing option : All elements(Normalised) Number of iterations = 3 Standards : Fe Ka Fe_20kV V Ka V_20kV Ti Ka Ti_20kV Zr La Zr_20kV Al Ka y_20kV

Element k Ratio Weight%

Fe Ka V Ka Ti Ka Zr La Al Ka Totals 0.21159

0.01365

0.57568

0.00013

0.02121

27.232

1.562

65.702

0.020

5.484

100.000

Weight%

Sigma 0.218

0.077

0.218

0.052

0.065

Intensity

Corrn.

0.8815

0.9918

0.9940

0.7261

0.4388

Atomic%

23.293

1.465

65.522

0.010

9.710

Project 1 Project: Project 1 Owner: INCA Site: Site of Interest 1 Sample: Sample 2 Type: Default ID: Label : WD Data 50 Acquistion conditions : kV = 20.0

Tilt = 0.0 degs Azimuth = 0.0 degs Elevation = 30.0 degs Effective take off angle = 30.0 degs Processing option : All elements(Normalised) Number of iterations = 2 Standards : Fe Ka Fe_20kV V Ka V_20kV Ti Ka Ti_20kV Zr La Zr_20kV Al Ka y_20kV

Element k Ratio Weight%

Fe Ka V Ka Ti Ka Zr La Al Ka Totals 0.70822

0.00563

0.23200

0.00019

0.00382

75.363

0.542

22.962

0.030

1.103

100.000

Weight%

Sigma 0.185

0.046

0.172

0.033

0.032

Intensity

Corrn.

0.9577

1.0572

1.0296

0.6569

0.3534

Atomic %

71.754

0.566

25.489

0.017

2.173

Project 1 Project: Project 1 Owner: INCA Site: Site of Interest 1 Sample: Sample 3 Type: Default ID: Label : WD Data 51 Acquistion conditions : kV = 20.0

Tilt = 0.0 degs Azimuth = 0.0 degs Elevation = 30.0 degs Effective take off angle = 30.0 degs Processing option : All elements(Normalised) Number of iterations = 2 Standards : Fe Ka Fe_20kV V Ka V_20kV Ti Ka Ti_20kV Zr La Zr_20kV Al Ka y_20kV

Element

Fe Ka V Ka Ti Ka Zr La Al Ka Totals

k Ratio

0.67021

0.00616

0.26760

0.00026

0.00343

Weight%

71.807

0.598

26.580

0.039

0.976

100.000

Weight%

Sigma 0.200

0.048

0.188

0.048

0.030

Intensity

Corrn.

0.9516

1.0508

1.0265

0.6635

0.3580

Atomic%

68.066

0.621

29.375

0.023

1.914

Model of Deformational Heating-up of Cladding and Base Plates at the Point of Contact Модель деформационного разогрева плакирующего и базового листов в зоне контакта

k hg = Factor of deformational heat generation k hg =Rm / ρ ( kJ/kg) Rm - tensile strength ρ - density

NO COMMENT