Transcript Slide 1
SENDORA Project and Dynamic Spectrum Access in Primary OFDMA Systems Pål Grønsund Hai Ngoc Pham Telenor R&I Simula Research Laboratory 03.04.09 ~85% A cognitive radio implements a set of functions Frequency Power Spectrum Holes Time Spectrum occupied by licensed users Secondary User Transmitted Signal Spectrum Mobility Spectrum Sharing Radio Environment RF Stimuli Primary User Detection Decision Request Channel Capacity Spectrum Characterization Spectrum Sensing Spectrum Hole Spectrum Decision [Figures inspired by Akyildez. I, Milano’08] [Animations by Gronsund, P’09] This talk will be split into two main parts SENDORA Project Overview Opportunities for Dynamic Spectrum Access in Primary OFDMA Systems 4 SENDORA concept consists in studying and developing a "Sensor Network aided Cognitive Radio" technology Primary Network Cognitive Network queries on spectrum status Wireless Sensor Network reports on spectrum status 3 main project objectives are defined Identify and analyze operational scenarios of the Wireless Sensor Network aided Cognitive Radio technology Define and simulate WSN aided opportunistic access and dynamic resources allocation strategies for cognitive radios Design a flexible and reconfigurable architecture, and demonstrate through a proof-of-concept the WSN aided Cognitive Radio technology Work Package breakdown, and participants WP2 Scenarios, System requirements and definition WP5 Cooperative Communications WP1 WP3 Project Management Sensing WP4 Cognitive Actuation WP8 Dissemination WP6 WSN design WP7 System integration and Demonstration The selected scenario is “Nomadic broadband in urban and suburban areas” Wireless broadband will be an important service for users and operators in the future Most users are stationary when needing mobile broadband Cognitive radio can offer high bit rates and low costs Can later be extended towards mobility A centralized system architecture with a fusion centre is proposed Primary System s C = Centralized access capability S = Sensing capability A = Ad hoc capability Dynamic Spectrum Access (DSA) will enable a secondary system to utilize available spectrum PU (Primary User) SU (Secondary User) DSA Current Mobile WiMAX profiles uses OFDMA and TDD TDD (Time Division Duplex) OFDMA (Orthogonal Frequency Division Multiple Access) Scheduling determines how bursts are mapped onto the OFDMA frame Vertical Striping Rectangular Scheduling Horizontal Striping [figures from WiMAX Forum, ns-2 System Documentation] Ns-2 source code can be modified to output relevant information subchannel offset symbol offset #subchannels direction / Connection ID #symbols burst profile FrameNum: 2410, Burst 4: start=3 (12.054552) numSubchanels=1 subchannelOffset=2 duration=3 :ULCID=3 UIUC=11 FrameNum: 2410, Burst 5: start=3 (12.054552) numSubchanels=1 subchannelOffset=3 duration=3 :ULCID=1 UIUC=11 FrameNum: 2410, Burst 6: start=15 (12.055923) numSubchanels=35 subchannelOffset=0 duration=0 :ULCID=-1 UIUC=14 FrameNum: 2411, Burst 0: start=3 (12.056345) numSubchanels=29 subchannelOffset=0 duration=2 :DLCID=65535 DIUC=2 FrameNum: 2411, Burst 1: start=5 (12.056573) numSubchanels=56 subchannelOffset=0 duration=4 :DLCID=16393 DIUC=7 FrameNum: 2411, Burst 2: start=28 (12.059202) numSubchanels=30 subchannelOffset=0 duration=0 :DLCID=-1 DIUC=14 FrameNum: 2411, Burst 0: start=0 (12.059209) numSubchanels=30 subchannelOffset=0 duration=2 :ULCID=-1 UIUC=1 FrameNum: 2411, Burst 1: start=2 (12.059437) numSubchanels=30 subchannelOffset=0 duration=1 :ULCID=-1 UIUC=2 FrameNum: 2411, Burst 2: start=3 (12.059552) numSubchanels=1 subchannelOffset=0 duration=3 :ULCID=5 UIUC=11 FrameNum: 2411, Burst 3: start=3 (12.059552) numSubchanels=1 subchannelOffset=1 duration=3 :ULCID=4 UIUC=11 FrameNum: 2411, Burst 4: start=3 (12.059552) numSubchanels=1 subchannelOffset=2 duration=3 :ULCID=1 UIUC=11 FrameNum: 2411, Burst 5: start=15 (12.060923) numSubchanels=35 subchannelOffset=0 duration=0 :ULCID=-1 UIUC=14 FrameNum: 2412, Burst 0: start=3 (12.061345) numSubchanels=29 subchannelOffset=0 duration=2 :DLCID=65535 DIUC=2 FrameNum: 2412, Burst 1: start=5 (12.061573) numSubchanels=56 subchannelOffset=0 duration=4 :DLCID=16393 DIUC=7 2 users, Downlink CBR traffic (1500 Bytes, 20 pps) Vertical striping is used to allocate OFDMA slots in the WiMAX ns-2 simulator Available capacity can be calculated Preamble DL MAP UL MAP Frequency (Subchannels) OFDMA Capacity (Subch * Symb) PU1 UL PU1 DL Available PU2 DL OFDMA Frame PU3 DL CAPtot PU2 UL CAPavail Available Initial Ranging Time (Symbols) CAPused Frame Index Downlink CBR traffic (1500 bytes, 20 pps) for 20 users (Best Effort) BW: 10 MHz DL-UL ratio: 2/3-1/3 OFDMA Capacity OFDMA Capacity 47.56 % Occupancy Frame Index DL : Max OFDMA Capacity 850 (30*28) Frame Index UL : Max OFDMA Capacity 525 (35*15) Uplink CBR traffic (1500 bytes, 20 pps) for 20 users (Best Effort) BW: 10 MHz DL-UL ratio: 2/3-1/3 OFDMA Capacity OFDMA Capacity 95.97 % Occupancy Frame Index DL : Max OFDMA Capacity 850 (30*28) Frame Index UL : Max OFDMA Capacity 525 (35*15) Temperature plot for occupancy for all OFDMA frames indicate potential for DSA Downlink CBR traffic for 20 BE users (20 seconds) Probability of Occupancy Occupancy distribution over all the traffic indicates potential for DSA Sub channels OFDM Symbols Downlink CBR traffic for 20 BE users (20 seconds) DL Capacity (SubCh*Symb) UL Capacity (SubCh*Symb) The consecutiveness of occupancy on a frame-by-frame basis is important for DSA Frame Index Frame Index Downlink Uplink CBR traffic for 20 BE users (1 sec) Probability of Occupancy One approach is to derive schemes for probability of occupancy (eg. time dependent occupancy distribution) Slot Index Frame Index DL Subframe, DL CBR traffic for 20 BE users (500 ms) In summary, we are characterizing the opportunities for DSA in primary OFDMA systems Capacity, distributions and consecutiveness of available OFDMA spectrum is characterized Derivation of schemes, protocols and systems for DSA in primary OFDMA systems is necessary Questions? Pal Gronsund ([email protected]) Hai Gnoc Pham ([email protected]) DSA