Transcript Introducing a New Product
INTRODUCTION TO OPERATIONS RESEARCH
Simplex Method Adapting to Other Forms
SIMPLEX METHOD Until now, we have dealt with the standard form of the Simplex method What if the model has a non-standard form?
Equality Constraints x 1 Greater than Constraints + x 2 = 8 x 1 + x 2 ≥ 8 Minimizing How do we get the initial BF solution?
EQUALITY CONSTRAINT
Original Form Augmented Form
Maximize Z = 3x 1 + 5x 2 Subject to: x 1 2x 2 ≤ 4 ≤ 12 3x 1 + 2x 2 = 18 x 1 ≥ 0, x 2 ≥ 0 Maximize Z = 3x 1 + 5x 2 Subject to: Z - 3x 1 x 1 + x 3 - 5x 2 = 4 2x 2 3x 1 + x 4 + 2x 2 = 12 = 0 = 18 x 1 , x 2 , x 3 , x 4 ≥ 0
ADAPTING EQUALITY CONSTRAINT
Original Form Artificial Form (Big M Method)
Maximize Z = 3x 1 + 5x 2 Maximize Z = 3x 1 + 5x 2 Subject to: x 1 2x 2 ≤ 4 ≤ 12 3x 1 + 2x 2 = 18 x 1 ≥ 0, x 2 ≥ 0 Subject to: Z - 3x 1 x 1 + x 3 - 5x 2 + Mx 5 = 4 2x 2 3x 1 + x 4 + 2x 2 = 12 + x 5 = 18 = 0 x 1 , x 2 , x 3 , x 4 , x 5 ≥ 0
SETTING UP THE SIMPLEX TABLEAU Z -3x 1 x 1 -5x 2 3x 1 x 2 2x 2 + x 3 + x 4 + Mx 5 + x 5 = 0 = 4 = 12 = 18
Basic Variable
Z x 3 x 4 x 5 Z 1 0 0 0 x 1 -3 1 0 3 Coefficient of: x 2 -5 x 0 3 0 2 2 1 0 0 x 4 0 0 1 0 x 5 M 0 0 1
Right Side
0 4 12 18
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 3 x 4 x 5 Z 1 0 0 0 x 1 -3 M -3 -2 M -5 1 0 3 Coefficient of: x 2 0 2 2 x 0 1 0 0 3 x 4 0 0 1 0 x 0 0 0 1 5
Right Side
-18 4 12 18 M To get to initial point, remove x 5 - 3x 1 - 5x 2 + Mx 5 = 0 (-M) ( 3x 1 (-3M-3)x 1 + 2x 2 + x 5 + (-2M-5)x 2 = 18) = -18M coefficient (M) from Z
Select Initial Point nonbasic variables: x 1 and x 2 (origin)
Initial BF solution: (x 1 , x 2 , x 3 , x 4 , x 5 ) = (0,0,4,12,18M)
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 3 x 4 x 5 Z 1 0 0 0 x 1 x 2 -3 M -3 -2 M -5 1 0 3 Coefficient of: 0 2 2 x 0 1 0 0 3 x 4 0 0 1 0 x 5 0 0 0 1
Right Side
-18 M 4 12 18
Optimality Test:
Are all coefficients in row (0) ≥ 0?
If yes , then
STOP
– optimal solution If no , then continue algorithm
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 3 x 4 x 5 Z 1 0 0 0 x 1 x 2 -3 M -3 -2 M -5 1 0 3 Coefficient of: 0 2 2 x 0 1 0 0 3 x 4 0 0 1 0 x 5 0 0 0 1
Right Side
-18 M 4 12 18 4/1 = 4 18/3 = 6
Select Entering Basic Variable
Choose variable with negative coefficient having largest absolute value
Select Leaving Basic Variable
1. Select coefficient in pivot column > 0 2. Divide Right Side value by this coefficient 3. Select row with smallest ratio
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 3 x 4 x 5 Z x 1 x 4 x 5 1 0 0 0 Z 1 0 0 0 x 1 x 2 -3 M -3 -2 M -5 1 0 3 Coefficient of: 0 2 2 x 0 1 0 0 3 x 4 0 0 1 0 0 1 0 0 -2 M -5 3 M +3 0 2 2 1 0 -3 0 0 1 0 x 5 0 0 0 1 0 0 0 1
Right Side
-18 4 12 18 M -6 M +12 4 12 6
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 1 x 4 x 5 Z 1 0 0 0 x 1 0 1 0 0 Coefficient of: x 2 x 3 -2 M -5 3 M +3 0 2 2 1 0 -3 x 4 0 0 1 0 x 5 0 0 0 1
Right Side
-6 M +12 4 12 6
BF Solution: Optimality Test:
(x 1 , x 2 , x 3 , x 4 , x 5 ) = (4,0,0,12,6) Are all coefficients in row (0) ≥ 0?
If yes , then
STOP
– optimal solution If no , then continue algorithm
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 1 x 4 x 5 Z 1 0 0 0 x 1 0 1 0 0 Coefficient of: x 2 x 3 -2 M -5 3 M +3 0 2 2 1 0 -3 x 4 0 0 1 0 x 5 0 0 0 1
Right Side
-6 M +12 4 12 6 12/2 = 6 6/2 = 3
Select Entering Basic Variable
Choose variable with negative coefficient having largest absolute value
Select Leaving Basic Variable
1. Select coefficient in pivot column > 0 2. Divide Right Side value by this coefficient 3. Select row with smallest ratio
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 1 x 4 x 5 Z x 1 x 4 x 2 1 0 0 0 Z 1 0 0 0 0 1 0 0 x 1 0 1 0 0 Coefficient of: x 2 x 3 -2 M -5 3 M +3 0 2 2 1 0 -3 x 4 0 0 1 0 0 0 0 1 -9/2 1 3 -3/2 x 5 0 0 0 1
Right Side
-6 M +12 4 12 6 0 0 1 0 M +5/2 0 -1 1/2 27 4 6 3
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 1 x 4 x 2 Z 1 0 0 0 x 1 0 1 0 0 Coefficient of: x 2 0 0 x 1 3 -9/2 0 1 3 -3/2 x 4 0 0 1 0 x 5 M +5/2 0 -1 1/2
Right Side
27 4 6 3
BF Solution: Optimality Test:
(x 1 , x 2 , x 3 , x 4 , x 5 ) = (4,3,0,6,0) Are all coefficients in row (0) ≥ 0?
If yes , then
STOP
– optimal solution If no , then continue algorithm
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 1 x 4 x 2 Z 1 0 0 0 x 1 0 1 0 0 Coefficient of: x 2 0 0 x 1 3 -9/2 0 1 3 -3/2 x 4 0 0 1 0 x 5 M +5/2 0 -1 1/2
Right Side
27 4 6 3 4/1 = 4 6/3 = 2
Select Entering Basic Variable
Choose variable with negative coefficient having largest absolute value
Select Leaving Basic Variable
1. Select coefficient in pivot column > 0 2. Divide Right Side value by this coefficient 3. Select row with smallest ratio
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 1 x 4 x 2 Z x 1 x 3 x 2 1 0 0 0 Z 1 0 0 0 0 1 0 0 x 1 0 1 0 0 Coefficient of: x 2 0 0 x 1 3 -9/2 0 1 3 -3/2 x 4 0 0 1 0 x 5 M +5/2 0 -1 1/2
Right Side
27 4 6 3 0 0 0 1 0 0 1 0 3/2 -1/3 1/3 1/2 M +1 1/3 -1/3 0 36 2 2 6
ITERATIONS OF THE SIMPLEX METHOD
Basic Variable
Z x 1 x 3 x 2 Z 1 0 0 0 x 1 0 1 0 0 Coefficient of: x 2 0 0 x 0 0 3 x 4 3/2 -1/3 0 1 1 0 1/3 1/2 x 5 M +1 1/3 -1/3 0
Right Side
36 2 2 6
BF Solution: Optimality Test:
(x 1 , x 2 , x 3 , x 4 , x 5 ) = (2,6,2,0,0) Are all coefficients in row (0) ≥ 0?
If yes , then
STOP
– optimal solution If no , then continue algorithm
ADAPTING FOR MINIMIZATION Minimize Z = 3x 1 + 5x 2
Multiply by -1
Maximize -Z = -3x 1 - 5x 2
NEGATIVE RIGHT-HAND SIDE x 1 - x 2 ≤ -1
Multiply by -1
-x 1 + x 2 ≥ 1
ADAPTING FOR A ≥ CONSTRAINT x 1 - x 2 ≥ 1
Augmented Form
x 1 - x 2 x 5 ≥ 1
Change Inequality Big M
x 1 x 1 - x 2 - x 2 x 5 x + 5 x ≤ 1 6 ≤ -1
EXAMPLE OF ADAPTING FORM
Original Form Adaption Form
Minimize Z = 4x 1 + 5x 2 Subject to: 3x 1 5x 1 + x 2 + 5x ≤ 27 2 = 60 6x 1 + 4x 2 ≥ 60 x 1 ≥ 0, x 2 ≥ 0 Minimize Z = 4x 1 Maximize + 5x -Z = -4x 1 2 - 5x 2 Subject to: -Z + 4x 1 3x 1 + x 2 5x 1 6x 1 + 5x + 4x 2 2 + 5x 2 + Mx 4 + x 3 = 27 + x x 5 4 = 60 + x 6 + = 60 Mx 6 = 0