Empirical Applications of Capital Market Models

Download Report

Transcript Empirical Applications of Capital Market Models

Empirical Applications of Capital Market Models Lecture XXVII

Capital Asset Pricing Models A basic question that must be addressed in the application of both CAPM and APT models is whether a risk-free asset exists.

In the basic Sharpe-Lintner CAPM model  

i

 

im R f

  

im

  

m

i

 

m m

 

R f

R f

 

im

 

R f

Z i Z m

   

E R i

 

m

 

R R f f

 

Z i

 

i i Z m

 

i

Constructing a dataset of 43 stocks from the Center for Research into Security Prices (CRSP) dataset, using the return on the Standard and Poors 500 portfolio and using the 3 month treasury bill as the market portfolio

Sharpe-Lintner Results 

i

i

11499 0.00651 (0.01459) 1.03884 (0.31641) 12140 -0.00267 (0.00522) 1.39450

(0.11317) 15553 0.00757

(0.00324) 0.30513

(0.07028) 18542 0.00223

(0.00494) 0.99853

(0.10708) 19166 0.00092

(0.00539) 1.08365

(0.11686) 19749 -0.00465

(0.01091) -0.00807

(0.23661)

Black’s Model An alternative to the model presented by Sharpe and Lintner is the zero-beta model suggested by Black   

im

  where

R

0

m

is the return on the zero-beta portfolio, or the minimum variance portfolio that is uncorrelated with the market portfolio

However, the model can be estimated assuming that the zero-beta return is unobserved as:  

i

 

im

 

im

 

m

Which yields the empirical model

R it

 

i i R mt it

Black’s Results 

i

i

11499 0.00636

(0.01485) 1.03803

(0.31591) 12140 -0.00422

15553 0.01033

(0.00531) (0.00330) 1.39097

(0.11303) 0.30890

(0.07028) 18542 0.00236

(0.00502) 0.98751

(0.10691) 19166 0.00056

(0.00548) 1.08609

(0.11667) 19749 -0.00057

(0.01110) -0.00944

(0.23618)

11499 12140 15553 18542 19166 19749 Comparison of Betas Sharpe-Lintner 1.03884

1.39450

0.30513

0.99853

1.08365

-0.00807

Black 1.03803

1.39097

0.30890

0.98751

1.08609

-0.00944

Tests for CAPM Efficiency ˆ Sharpe-Lintner Model ˆ

m

 ˆ  1

T t T

  1

R t

 ˆ  1

T t T

  1 

Z t

  ˆ 

Z mt t T

  1 

Z mt

   ˆ

m

 2  ˆ

m

t T

  1 

Z t

  ˆ

Z mt



Z t

  ˆ

Z mt

  ˆ

m

 1

T t T

  1

Z mt

 ˆ  ˆ

N

     1 ,

T N

     1 ,

T

   1   ˆ

m

 2 2

m

            1 2

m

       

H

0 : 

H

1 :   0  0

J

0 

T

   1   ˆ

m

 2 2

m

    1  ˆ    1  ˆ

Cross-Sectional Regression Fama, E. and J. MacBeth “Risk, Return, and Equilibrium: Empirical Tests.” 71(1973): 607 –36.

Using either set of betas, the question then becomes whether the expected returns are consistent with their betas.  

i

 0   1

i

 0  1 Cross-Sectional Results Parameter Estimate 0.006062

(0.000592) 0.906548

(0.092863)

Two Tests  Sharpe-Lintner test of the constant  0 0.006062

0.000592

 10.23986

 Betas explain the variations in expected returns  1 0.092863

 1.006343

A little reformulation:  

i

 0    1

i

 2

D i

where

D i

is a dummy variable which is equal to one if the stock is an agribusiness stock and zero otherwise

 0  1  2 Risk Premium for Agribusinesses Parameter Estimate 0.006083 (0.000605) 0.913067 (0.097456) -0.000350 (0.001374)

Arbitrage Pricing Model As we discussed in previous lectures, the returns in the arbitrage pricing model are assumed to be determined by a linear factor model:

R t R t

M N

*1

f t

t

M k

*1 

t b

M

R t

is a vector of

N

asset returns 

f t

is a vector of

k

common factors 

b

is a

N*k

matrix of factor loadings The arbitrage pricing equilibrium implies that the expected return on the vector of assets is a linear function of the factor loadings  0

b

 

Two ways to define the common factors:  Endogenously based on returns  Exogenously based on macroeconomic variables

 Given the linear factor model above, the variance matrix for the returns on the vector of assets becomes:

 

where  is a diagonal matrix.

Under this specification, we can estimate the vector of factor loadings by maximizing

L

  ln    1  

Stock Number 11499 12140 15553 18542 19166 19749 11499 Factor Loadings Factor 1 0.00576

0.03512

0.02569

0.01408

0.01922

-0.01091

0.00576

Factor 2 -0.05389

-0.06152

-0.00286

-0.05615

-0.05780

-0.00215

-0.05389

Parameter  0  1  2 Estimated Risk Premia Estimate 0.01123

(0.00200) 0.00397

(0.05674) -0.07589

(0.03665)

Augmenting the model to test for disequilibria in the equity market for Agribusinesses  

i

  0

b

1 1

i

 

b

2 2

i

  3

D i

Parameter  0  1  2  3 Estimated Risk Premia Estimate 0.01061

(0.00198) -0.00940

(0.05568) -0.08497

(0.03601) 0.00413

(0.00229)