Transcript Slide 1
Coulomb excitation with radioactive ion beams • Motivation and introduction • Theoretical aspects of Coulomb excitation • Experimental considerations, set-ups and analysis techniques • Recent highlights and future perspectives Lecture given at the Euroschool 2009 in Leuven Wolfram KORTEN CEA Saclay Wolfram KORTEN Euroschool Leuven – September 2009 1 Shell structure of atomic nuclei 126 82 stable double-magic nuclei 4He, 16O, 40Ca, 48Ca, 208Pb protons 50 28 82 20 radioactive: 56Ni, 132Sn, magic ? 48Ni, 78Ni, 100Sn 50 8 2 28 20 2 8 Wolfram KORTEN no 28O ! 48Ca neutrons 32Mg 42Si 70Ca ? 40Ca Euroschool Leuven – September 2009 2 Changes in the nuclear shell structure 126 82 Only observable in heavy nuciei: (Z,N) > 40 Spin-orbit term of the nuclear int. ? 132Sn 82 protons 50 N/Z 110Zr 70 “drip line” stabil f7/2 f7/2 28 82 20 82 h11/2 d3/2 s1/2 g7/2 50 8 2 28 20 2 8 Wolfram KORTEN neutrons h11/2 70 d5/2 50 g9/2 Euroschool Leuven – September p1/2 2009 g7/2 d3/2 s1/2 d5/2 g9/2 40 p31/2 Changes in the nuclear shell structure Observables: N=20 E(2+) [MeV] Masses and separation energies Properties of 2+ states 16 20 3 2 20Ca 28 1 Ca K 2 104 12Mg Ar Cl 16S 0 S 1,5 104 P 12 Si 16 20 N 24 Al 1 104 Mg 48 Ar 47 24 O 5000 44 42 20 C 17 0 N Ne Mg Na 35 F 15 P S 20 25 F O C 40 Al B 30 Neutron number Example: “Island of inversion” around deformed ground state Wolfram KORTEN Ne N 37 32 29 B 10 Si 23 45 Cl Na B(E2) [e2fm4] S2N (keV) 4 400 N=20 sd+fp 200 sd 32Mg 40Ca 38Ar Euroschool Leuven – September 2009 36S 34Si 32Mg 30Ne N/Z 4 Shapes of atomic nuclei 126 Z, N = magic numbers protons 50 28 82 20 50 8 2 28 20 2 8 50 sngle particle enegies Closed shell = spherical shape 82 Nilssondiagramm 28 20 Oblate 8 Prolate neutrons Spherical 2 The vast majority of all nuclei shows aWolfram non-spherical mass distribution KORTEN Euroschool Leuven – September 2009 elongation Deformed 5 Quadrupole deformation of nuclei M. Girod, CEA Coulomb excitation can, in principal, map the shape of all atomic nuclei Wolfram KORTEN Euroschool Leuven – September 2009 6 Quadrupole deformation of nuclei N=Z Oblate Pb & Bi N~Z Fission fragments Prolate M. Girod, CEA Oblate deformed nuclei are far less abundant than prolate nuclei Shape coexistence possible for certain regions of N & Z Wolfram KORTEN Euroschool Leuven – September 2009 7 Shape variations and intruder orbitals 152Dy 108Cd single-particle energy (Woods-Saxon) i13/2235U N+3 shell N+2 shell N+1 shell N shell Z=48 Energy Fermi level Deformation ND SD quadrupole deformation HD (N+1) intruder normal deformed, e.g. 235U (N+2) super-intruder Superdeformation, e.g. 152Dy, 80Zr (N+3) hyper-intruder Hyperdeformation in 108Cd, ? Wolfram KORTEN Euroschool Leuven – September 2009 8 Exotic shapes and “deformation” parameters Generic nuclear shapes can be described R(t ) R0 1 by a development of spherical harmonics quadrupole a20 2 cos a22 a2 2 1 2 sin 2 a (t ) Y ( , ) a:deformation parameters Tetrahedral Triaxial Y22 Y32 deformation deformation octupole Lund convention oblate non-collective spherical hexadecapole 2 : elongation Static rotation Dynamic vibration : triaxiality prolate non-collective Wolfram KORTEN prolate collective oblate collective Euroschool Leuven – September 2009 9 Coulomb excitation – an introduction Wolfram KORTEN Euroschool Leuven – September 2009 10 Rutherford scattering – some reminders target b projectile r(t) x2 y2 2 1 2 a b a beam energy b = impact parameter • Elastic scattering of charged particles (point-like monopoles) under the influence of the Coulomb field FC = Z1Z2e2/r2 with r(t) = |r1(t) – r2(t)| hyperbolic relative motion of the reaction partners • Rutherford cross section ds/dq Z1Z2e2/Ecm2 sin-4(qcm/2) valid as longas Ecm m0 v 2 Wolfram KORTEN m P mT 2 v Vc Z1Z2e2 /R int m P mT Euroschool Leuven – September 2009 11 Coulomb excitation – some basics Nuclear excitation by the electromagnetic interaction acting between two colliding nuclei. target b projectile Target and projectile excitation possible often heavy, magic nucleus (e.g. 208Pb) as projectile target Coulomb excitation as target projectile Coulomb excitation (important technique for radioactive beams) small impact parameter back scattering close approach strong EM field large impact parameter forward scattering large distance weak EM field Coulomb trajectories only if the colliding nuclei do not reach the “Coulomb barrier” purely electromagnetic process, no nuclear interaction, calculable with high precision Wolfram KORTEN Euroschool Leuven – September 2009 12 Reactions below the Coulomb barrier VC= Z1Z2e2/rb (1-a/rb) rb = 1.07(A11/3+A21/3) + 2.72 fm a=0.63 fm (surface diffuseness) sexp/sRuth Beam energy per nucleon (EB/A) rather constant, e.g. for 208Pb target 5.6 to 6 A.MeV Pure Coulomb excitation requires a much larger distance between the nuclei ”safe energy” requirement Wolfram KORTEN Inelastic scattering (e.m/nucl.) Transfer reactions Fusion Euroschool Leuven – September 2009 13 „Safe“ energy requirement target b projectile Dmin q Ecm Z P ZT e Dmin 2 • Rutherford scattering only if the distance of closest approach is large compared to nuclear radii + surfaces: „Simple“ approach using the liquid-drop model Dmin rs = [1.25 (A11/3 + A21/3) + 5] fm • More realistic approach using the half-density radius of a Fermi mass distribution of the nuclei : Ci = Ri(1-Ri-2) with R = 1.28 A1/3 - 0.76 + 0.8 A-1/3 Dmin rs = [ C1 + C2 + S ] fm Wolfram KORTEN Euroschool Leuven – September 2009 14 „Safe“ energy requirement sexp/sRuth Dmin Empirical data on surface distance S as function of half-density radii Ci require distance of closest approach S > 5 - 8 fm choose adequate beam energy (D > Dmin for all q) low-energy Coulomb excitation limit scattering angle, i.e. select impact parameter b > Dmin, high-energy Coulomb excitation Wolfram KORTEN Euroschool Leuven – September 2009 15 Validity of classical Coulomb trajectories projectile b=0 target D=2a Sommerfeld parameter a Z P ZT e 2 η 1 v Pb >> 1 requirement for a semi classical treatment of equations of motion measures the strength of the monopole-monopole interaction equivalent to the number of exchanged photons needed to force the nuclei on a hyperbolic orbit Wolfram KORTEN Euroschool Leuven – September 2009 Ar O He 16 Coulomb trajectories – some more definitions target b projectile D(q) q r (w) = a (e sinh w + 1) t (w) = a/v (e cosh w + w) a = Zp Zt e2 E-1 Principal assumption >>1 classical description of the relative motion of the center-of-mass of the two nuclei hyperbolic trajectories 1 θ cm distance of closest approach (for w=0): D (θcm ) a (1 ε ) a 1 sin 2 θ impact parameter: b D2 - 2aD a cot cm 2 q angular momentum : L e 2 1 cot cm 2 Wolfram KORTEN Euroschool Leuven – September 2009 17 Coulomb excitation – the principal process target b vi projectile vf ΔE Ei Ef 12 m0 v i2 v f2 with m0 m P mT m P mT Inelastic scattering: kinetic energy is transformed into nuclear excitation energy e.g. rotation vibration Excitation probability (or cross section) is a measure of the collectivity of the nuclear state of interest complementary to, e.g., transfer reactions Wolfram KORTEN Euroschool Leuven – September 2009 18 Coulomb excitation – “sudden impact” Excitation occurs only if nuclear time scale is long compared to the collision time: „sudden impact“ if nucl >> coll ~ a/v 10 fm / 0.1c 2-310-22 s coll ~ nucl ~ ћ/E adiabatic limit for (single-step) excitations ΔE ΔE a Z1Z2e2 1 1 ξ τ coll v vf vi : adiabacity paramater sometimes also (q) with D(q) instead of a v ΔE max (ξ 1) a Wolfram KORTEN Limitation in the excitation energy E for single-step excitations in particular for low-energy reactions (v<c) Euroschool Leuven – September 2009 19 Coulomb excitation – first conclusions Maximal transferable excitation energy and spin in heavy-ion collisions =1 c v i for v i /c 1 a c c ΔE max (ξ 1) βγ a ΔE max (ξ 1) Wolfram KORTEN Z1e2Qrot Lmax (1 cosθcm ) 2 v D θgr Lmax ηcot ECM Vc 2 Euroschool Leuven – September 2009 20 Coulomb excitation – the different energy regimes Low-energy regime (< 5 MeV/u) Energy cut-off ΔE max Spin cut-off: Wolfram KORTEN v 2 MeV aε L up to 30ћ High-energy regime (>>5 MeV/u) ΔE max c βγ 10MeV( β 0.4) aε L~ n with n~1 Euroschool Leuven – September 2009 21 Summary • Coulomb excitation is a purely electro-magnetic excitation process of nuclear states due to the Coulomb field of two colliding nuclei. • Coulomb excitation is a very precise tool to measure the collectivity of nuclear excitations and in particular nuclear shapes. • Coulomb excitation appears in all nuclear reactions (at least in the incoming channel) and can lead to doorway states for other excitations. • Pure electro-magnetic interaction (which can be readily calculated without the knowledge of optical potentials etc.) requires “safe” distance between the partners at all times. Wolfram KORTEN Euroschool Leuven – September 2009 22