Transcript Slide 1
Coulomb excitation with
radioactive ion beams
• Motivation and introduction
• Theoretical aspects of Coulomb excitation
• Experimental considerations, set-ups and
analysis techniques
• Recent highlights and future perspectives
Lecture given at the
Euroschool 2009 in Leuven
Wolfram KORTEN
CEA Saclay
Wolfram KORTEN
Euroschool Leuven – September 2009
1
Shell structure of atomic nuclei
126
82
stable double-magic nuclei
4He, 16O, 40Ca, 48Ca, 208Pb
protons
50
28
82
20
radioactive: 56Ni, 132Sn,
magic ? 48Ni, 78Ni, 100Sn
50
8
2
28
20
2 8
Wolfram KORTEN
no 28O !
48Ca
neutrons
32Mg
42Si
70Ca
?
40Ca
Euroschool Leuven – September 2009
2
Changes in the nuclear shell structure
126
82
Only observable in heavy nuciei:
(Z,N) > 40
Spin-orbit term of the nuclear int. ?
132Sn
82
protons
50
N/Z
110Zr
70
“drip line”
stabil
f7/2
f7/2
28
82
20
82
h11/2
d3/2
s1/2
g7/2
50
8
2
28
20
2 8
Wolfram KORTEN
neutrons
h11/2
70
d5/2
50
g9/2
Euroschool Leuven – September
p1/2 2009
g7/2
d3/2
s1/2
d5/2
g9/2
40
p31/2
Changes in the nuclear shell structure
Observables:
N=20
E(2+) [MeV]
Masses and separation energies
Properties of 2+ states
16
20
3
2
20Ca
28
1
Ca
K
2 104
12Mg
Ar
Cl
16S
0
S
1,5 104
P
12
Si
16 20
N
24
Al
1 104
Mg
48
Ar
47
24
O
5000
44
42
20
C
17
0
N
Ne
Mg
Na
35
F
15
P S
20
25
F
O
C
40
Al
B
30
Neutron number
Example: “Island of inversion” around
deformed ground state
Wolfram KORTEN
Ne
N
37
32
29
B
10
Si
23
45
Cl
Na
B(E2) [e2fm4]
S2N (keV)
4
400
N=20
sd+fp
200
sd
32Mg
40Ca 38Ar
Euroschool Leuven – September 2009
36S
34Si 32Mg 30Ne
N/Z
4
Shapes of atomic nuclei
126
Z, N = magic numbers
protons
50
28
82
20
50
8
2
28
20
2 8
50
sngle particle enegies
Closed shell = spherical shape 82
Nilssondiagramm
28
20
Oblate
8
Prolate
neutrons
Spherical
2
The vast majority of all nuclei shows
aWolfram
non-spherical
mass distribution
KORTEN
Euroschool Leuven – September 2009
elongation
Deformed
5
Quadrupole deformation of nuclei
M. Girod, CEA
Coulomb excitation can, in principal, map the shape of all atomic nuclei
Wolfram KORTEN
Euroschool Leuven – September 2009
6
Quadrupole deformation of nuclei
N=Z
Oblate
Pb & Bi
N~Z
Fission
fragments
Prolate
M. Girod, CEA
Oblate deformed nuclei are far less abundant than prolate nuclei
Shape coexistence possible for certain regions of N & Z
Wolfram KORTEN
Euroschool Leuven – September 2009
7
Shape variations and intruder orbitals
152Dy 108Cd
single-particle energy (Woods-Saxon)
i13/2235U
N+3 shell
N+2 shell
N+1 shell
N shell
Z=48
Energy
Fermi level
Deformation
ND
SD
quadrupole deformation
HD
(N+1) intruder
normal deformed, e.g. 235U
(N+2) super-intruder
Superdeformation, e.g. 152Dy,
80Zr
(N+3) hyper-intruder
Hyperdeformation in 108Cd, ?
Wolfram KORTEN
Euroschool Leuven – September 2009
8
Exotic shapes and “deformation” parameters
Generic nuclear shapes can be described
R(t ) R0 1
by a development of spherical harmonics
quadrupole
a20 2 cos
a22 a2 2
1
2 sin
2
a (t ) Y ( , )
a:deformation parameters
Tetrahedral
Triaxial Y22
Y32
deformation
deformation
octupole
Lund
convention
oblate
non-collective
spherical
hexadecapole
2 : elongation
Static rotation
Dynamic vibration
: triaxiality
prolate
non-collective
Wolfram KORTEN
prolate
collective
oblate
collective
Euroschool Leuven – September 2009
9
Coulomb excitation – an introduction
Wolfram KORTEN
Euroschool Leuven – September 2009
10
Rutherford scattering – some reminders
target
b
projectile
r(t)
x2 y2
2 1
2
a
b
a beam energy
b = impact parameter
• Elastic scattering of charged particles (point-like
monopoles) under the influence of the Coulomb field
FC = Z1Z2e2/r2 with r(t) = |r1(t) – r2(t)|
hyperbolic relative motion of the reaction partners
• Rutherford cross section
ds/dq Z1Z2e2/Ecm2 sin-4(qcm/2)
valid as longas Ecm m0 v 2
Wolfram KORTEN
m P mT 2
v Vc Z1Z2e2 /R int
m P mT
Euroschool Leuven – September 2009
11
Coulomb excitation – some basics
Nuclear excitation by the electromagnetic interaction
acting between two colliding nuclei.
target
b
projectile
Target and projectile excitation possible
often heavy, magic nucleus (e.g. 208Pb)
as projectile target Coulomb excitation
as target projectile Coulomb excitation
(important technique for radioactive beams)
small impact parameter
back scattering
close approach
strong EM field
large impact parameter
forward scattering
large distance
weak EM field
Coulomb trajectories only if the colliding nuclei do not reach the “Coulomb barrier”
purely electromagnetic process, no nuclear interaction, calculable with high precision
Wolfram KORTEN
Euroschool Leuven – September 2009
12
Reactions below the Coulomb barrier
VC= Z1Z2e2/rb (1-a/rb)
rb = 1.07(A11/3+A21/3) + 2.72 fm
a=0.63 fm (surface diffuseness)
sexp/sRuth
Beam energy per nucleon (EB/A)
rather constant, e.g. for 208Pb target
5.6 to 6 A.MeV
Pure Coulomb excitation requires a
much larger distance between the nuclei
”safe energy” requirement
Wolfram KORTEN
Inelastic scattering (e.m/nucl.)
Transfer reactions
Fusion
Euroschool Leuven – September 2009
13
„Safe“ energy requirement
target
b
projectile
Dmin
q
Ecm
Z P ZT e
Dmin
2
• Rutherford scattering only if the distance of closest
approach is large compared to nuclear radii + surfaces:
„Simple“ approach using the liquid-drop model
Dmin rs = [1.25 (A11/3 + A21/3) + 5] fm
• More realistic approach using the half-density radius of a
Fermi mass distribution of the nuclei :
Ci = Ri(1-Ri-2) with R = 1.28 A1/3 - 0.76 + 0.8 A-1/3
Dmin rs = [ C1 + C2 + S ] fm
Wolfram KORTEN
Euroschool Leuven – September 2009
14
„Safe“ energy requirement
sexp/sRuth
Dmin
Empirical data on surface distance S as function of half-density radii Ci
require distance of closest approach S > 5 - 8 fm
choose adequate beam energy (D > Dmin for all q)
low-energy Coulomb excitation
limit scattering angle, i.e. select impact parameter b > Dmin,
high-energy Coulomb excitation
Wolfram KORTEN
Euroschool Leuven – September 2009
15
Validity of classical Coulomb trajectories
projectile
b=0
target
D=2a
Sommerfeld parameter
a Z P ZT e 2
η
1
v
Pb
>> 1 requirement for a semi classical
treatment of equations of motion
measures the strength of the
monopole-monopole interaction
equivalent to the number of
exchanged photons needed to force
the nuclei on a hyperbolic orbit
Wolfram KORTEN
Euroschool Leuven – September 2009
Ar
O
He
16
Coulomb trajectories – some more definitions
target
b
projectile
D(q)
q
r (w) = a (e sinh w + 1)
t (w) = a/v (e cosh w + w)
a = Zp Zt e2 E-1
Principal assumption >>1 classical description of the relative motion
of the center-of-mass of the two nuclei hyperbolic trajectories
1
θ
cm
distance of closest approach (for w=0):
D (θcm ) a (1 ε ) a 1 sin
2
θ
impact parameter:
b D2 - 2aD a cot cm
2
q
angular momentum :
L e 2 1 cot cm
2
Wolfram KORTEN
Euroschool Leuven – September 2009
17
Coulomb excitation – the principal process
target
b
vi
projectile
vf
ΔE Ei Ef 12 m0 v i2 v f2 with m0
m P mT
m P mT
Inelastic scattering: kinetic energy is transformed into nuclear excitation energy
e.g.
rotation
vibration
Excitation probability (or
cross section) is a measure
of the collectivity of the
nuclear state of interest
complementary to, e.g.,
transfer reactions
Wolfram KORTEN
Euroschool Leuven – September 2009
18
Coulomb excitation – “sudden impact”
Excitation occurs only if nuclear time scale is long compared to the collision time:
„sudden impact“ if nucl >> coll ~ a/v 10 fm / 0.1c 2-310-22 s
coll ~ nucl ~ ћ/E adiabatic limit for (single-step) excitations
ΔE
ΔE a
Z1Z2e2 1 1
ξ
τ coll
v
vf vi
: adiabacity paramater
sometimes also (q) with D(q) instead of a
v
ΔE max (ξ 1)
a
Wolfram KORTEN
Limitation in the excitation energy E
for single-step excitations in particular
for low-energy reactions (v<c)
Euroschool Leuven – September 2009
19
Coulomb excitation – first conclusions
Maximal transferable excitation energy and spin in heavy-ion collisions
=1
c v i
for v i /c 1
a c
c
ΔE max (ξ 1)
βγ
a
ΔE max (ξ 1)
Wolfram KORTEN
Z1e2Qrot
Lmax
(1 cosθcm )
2
v D
θgr
Lmax ηcot
ECM Vc
2
Euroschool Leuven – September 2009
20
Coulomb excitation – the different energy regimes
Low-energy regime
(< 5 MeV/u)
Energy cut-off ΔE max
Spin cut-off:
Wolfram KORTEN
v
2 MeV
aε
L up to 30ћ
High-energy regime
(>>5 MeV/u)
ΔE max c
βγ
10MeV( β 0.4)
aε
L~ n with n~1
Euroschool Leuven – September 2009
21
Summary
• Coulomb excitation is a purely electro-magnetic excitation
process of nuclear states due to the Coulomb field of two
colliding nuclei.
• Coulomb excitation is a very precise tool to measure the
collectivity of nuclear excitations and in particular nuclear
shapes.
• Coulomb excitation appears in all nuclear reactions (at
least in the incoming channel) and can lead to doorway
states for other excitations.
• Pure electro-magnetic interaction (which can be readily
calculated without the knowledge of optical potentials etc.)
requires “safe” distance between the partners at all times.
Wolfram KORTEN
Euroschool Leuven – September 2009
22