Transcript Slide 1

Anaerobic Digestion of Solid Waste

Dorothee Spuhler, seecon gmbh

Anaerobic Digestion of Solid Waste 1

Find this presentation and more on: www.sswm.info

.

Copyright & Disclaimer

Copy it, adapt it, use it – but acknowledge the source!

Copyright

Included in the SSWM Toolbox are materials from various organisations and sources. Those materials are open source. Following the open source concept for capacity building and non-profit use, copying and adapting is allowed provided proper acknowledgement of the source is made (see below). The publication of these materials in the SSWM Toolbox does not alter any existing copyrights. Material published in the SSWM Toolbox for the first time follows the same open-source concept, with all rights remaining with the original authors or producing organisations.

To view an official copy of the the Creative Commons Attribution Works 3.0 Unported License we build upon, visit http://creativecommons.org/licenses/by/3.0

. This agreement officially states that:

You are free to:

Share - to copy, distribute and transmit this document • Remix - to adapt this document. We would appreciate receiving a copy of any changes that you have made to improve this document.

Under the following conditions: • Attribution: You must always give the original authors or publishing agencies credit for the document or picture you are using.

Disclaimer

The contents of the SSWM Toolbox reflect the opinions of the respective authors and not necessarily the official opinion of the funding or supporting partner organisations.

Depending on the initial situations and respective local circumstances, there is no guarantee that single measures described in the toolbox will make the local water and sanitation system more sustainable. The main aim of the SSWM Toolbox is to be a reference tool to provide ideas for improving the local water and sanitation situation in a sustainable manner. Results depend largely on the respective situation and the implementation and combination of the measures described. An in-depth analysis of respective advantages and disadvantages and the suitability of the measure is necessary in every single case. We do not assume any responsibility for and make no warranty with respect to the results that may be obtained from the use of the information provided.

Anaerobic Digestion of Solid Waste

Find this presentation and more on: www.sswm.info

.

Contents

1. Concept 2. How can Digestion of Green Waste optimise SSWM 3. Design Principals 4. Examples of Applications 5. Applicability 6. Pros’ and Con’s 7. References Anaerobic Digestion of Solid Waste 3

Find this presentation and more on: www.sswm.info

.

1. Concept

Background

Anaerobic digestion is a natural process which occurs when organic material is kept in the absence of air. Thereby, the organic material is transformed into biogas, a renewable and green energy.

In developed countries, this process has been evolved over the past twenty years, resulting in more and more complex large-scale biogas plants including heating and multiple stage processes.

So far, several million conventional biogas plants, using predominantly animal manure as feedstock, have been successfully installed in rural areas of developing countries. (VOEGELI & ZURBRUEGG 2008) Anaerobic digestion, as a controlled and voluntary process for the reduction and reuse of green wastes has a large potential to give answer to the soaring crisis of increasing municipal solid wastes for instance in urban and peri-urban areas of the developing world. (VOEGELI & ZURBRUEGG 2008) Anaerobic Digestion of Solid Waste 4

Find this presentation and more on: www.sswm.info

.

1. Concept

Anaerobic Digestion of Green Waste (1/2)

Anaerobic Digestion takes place in airtight reactors. The organic fraction of the wastes is transformed into a mixture of CH 4 , CO 2 and some trace gases (biogas).

The produced biogas can be used either directly for cooking, heating or lightening .

It can also be transformed into combined heat and power cogeneration plants .

(CHP) in Biogas can also be compressed and sold as fuel like natural gas.

(e.g. for vehicles), much With time the reactors fill up and digested sludge (sludge which organic fraction was already converted to biogas) accumulates in the bottom.

Nutrients remain in the sludge is a well-balanced fertiliser and can be used in agriculture as a rich soil amendment.

Anaerobic Digestion of Solid Waste 5

Find this presentation and more on: www.sswm.info

.

1. Concept

Anaerobic Digestion of Green Waste

Green Waste Biogas Coocking Lightning Heating Electricity Agriculture

Anaerobic Digestion of Solid Waste

Fertiliser Fuel

D. SPUHLER (2010), Pictures from:

www.kristianstad.se/ ;

http://www.newseedadvisors.com/2009/09/10/invest/ ; http://www.hydroharrys.com/hydroharrys_about_fertilizer.php

; http://www.mytinyplot.co.uk/advice/the-art-of-composting/ www.clker.com

[Accessed: 02.06.2010]

6

Find this presentation and more on: www.sswm.info

.

1. Concept

Anaerobic Digestion of Green Waste: Small-scale

Food Biogas Energy

D. SPUHLER (2010). Pictures from: //gardening.ygoy.com/wp-content/uploads/2009/10/how-to-plant-a-decorative-vegetable garden0.jpg; http://www.gardenplansireland.com/forum/about436.html; http://www.clker.com/ [Accessed: 06.06.2010]

Anaerobic Digestion of Solid Waste

Soil amendement

7

Find this presentation and more on: www.sswm.info

.

1. Concept

Anaerobic Digestion of Green Waste: Large-scale

Anaerobic Digestion of Solid Waste

Source: HOLLIGER (2008)

8

Find this presentation and more on: www.sswm.info

.

1. Concept

The example of Kristianstad (Sweden)

Food production at farms Green waste from households and industries Re-use of nutrients Co-digestion of waste and manure Re-use of energy

Anaerobic Digestion of Solid Waste 9

Find this presentation and more on: www.sswm.info

.

1. Concept

What is Green Waste?

Green waste is any kind refused material which is biodegradable and has a high fraction of organic matter, which can be transformed into biogas.

Some examples…

http://www.bawbawshire.vic.gov.au/Page/i mages/green-waste-grass.jpg

[Accessed: 04.06.2010]

Garden refuses

http://planetgreen.discovery.com/hom e-garden/images/2009-04/organic waste.jpg

[Accessed: 04.06.2010]

Waste from agriculture

http://www.agro resources.com/uploads/images /chocolate%20waste.jpg

[Accessed: 04.06.2010]

Refuses from the food industry

http://www.ducorwaste.org/images/Rally_Time_ Stockpike.jpg

[Accessed: 04.06.2010]

Market waste

http://www.mytinyplot.co.uk/advice/the-art-of composting/ [Accessed: 04.06.2010] http://www.ceroi.net/reports/dushanbe/eng/waste.htm

[Accessed: 04.06.2010]

Organic fraction of municipal waste

Anaerobic Digestion of Solid Waste

http://www.titech.com/assets/x/50186 ?width=82 [Accessed: 04.06.2010]

Some industrial wastes Kitchen refuses

10

Find this presentation and more on: www.sswm.info

.

1. Concept

What is Biogas ?

Biogas is a mixture of methane and carbon dioxide.

The properties of biogas are similar to the ones of natural gas.

Biogas is the common name for the mixture of gases released from anaerobic digestion.

Typically biogas is composed of: Methane (CH 4 ) Carbon Dioxide (CO 2 ) Hydrogen (H) Nitrogen (N 2 ) Hydrogen sulphide (H 2 S) 50 to 75 % 25 to 50 % 5 to 10 % 1 to 2 % Traces

Sources: YADAV & HESSE (1981); FAO (1996); PIPOLI (2005); GTZ (2009 Source: MUENCH (2008)

Methane is the valuable part of the biogas. Biogas that contains about 60 to 70 % of CH 4 has a calorific value of about 6 kWh/m3 what corresponds to about half an L of diesel oil. (ISAT/GTZ 1999, Vol. I) Anaerobic Digestion of Solid Waste 11

Find this presentation and more on: www.sswm.info

.

1. Concept

What is Anaerobic Digeastion ? (1/2)

Degradation of organic material by bacteria. In the absence of air (anaerobic). Four stages: •Hydrolisis ◦ Cleavage of a chemical compound through the reaction with water.

◦ Insoluble complex molecules are bracken down to short sugars, fatty acids and amino acids.

Fermentation (Acidogenesis) ◦ Products from hydrolysis are transformed into organic acids, alcohols, carbon dioxide (CO 2 ), hydrogen (H) and ammonia (NH 3 ). •Acetogenesis ◦ Organic acids and alcohols are converted into hydrogen (H 2 ), carbon dioxide (CO 2 ) and acetic acid (CH 3 COOH). Therefore, oxygen is consumed and anaerobic conditions are created •Methanogenesis ◦ Methanogenic bacteria (methanogenesis), transform the acetic acid, carbon dioxide and hydrogen into biogas. Anaerobic Digestion of Solid Waste 12

Find this presentation and more on: www.sswm.info

.

1. Concept

What is Anaerobic Digestion ? (2/2)

Anaerobic Digestion of Solid Waste

D. SPUHLER (2010)

13

Find this presentation and more on: www.sswm.info

.

1. Concept

What is a anaerobic digester ?

Source: HOLLIGER (2008)

1. Airtight chamber, filled with green waste 2. Anaerobic digestion takes place 3. Sludge settles on the bottom 4. Gas bubbles to the top where it is collected Reaction temperature is > 35 to 55 ° C: mesophilic or thermophilic range Either continuous or in batch mode: • Batch: filled and left for digestion; After the hydraulic retention time (HRT) emptied and filled again for a new cycle • Continuously-stirred tank reactor (CSTR): continuous in/out flow and mixing • Plug-flow reactor: the sludge moves through the reactor much like a train to a tunnel, with a velocity corresponding to the minimal HRT The liquid phase can be re-circulated to maintain optimal moisture conditions 14 Anaerobic Digestion of Solid Waste

Find this presentation and more on: www.sswm.info

.

1. Concept

Examples: Small-scale digesters

http://www.open2.net/blo gs/media/blogs/Biogas_pla nt_Kerala.jpg

Household floating-drum digesters

http://colli239.fts.educ.msu.edu/wp content/uploads/2009/05/biotech2007cc.jpg

[Accessed: 04.06.2010]

Anaerobic Digestion of Solid Waste

Source: F. HEEB

Portable reactors form the Indian NGO BIOTECH

http://images01.olx.in/ui/4/96/20 /67509620_1-Install-biotech portable-biogas-plants-and convert-food-waste-to-biogas Vazhuthacaud.jpg

[Accessed: 04.06.2010]

15

Find this presentation and more on: www.sswm.info

.

1. Concept

Examples: Large-scale digesters

http://www.klima-sucht-schutz.de/mitmachen/klima quiz/lexikon.html

[]Accessed: 04.06.2010

Anaerobic Digestion of Solid Waste

Source: BRUYN (2006) Source: BRUYN (2006) Source: BRUYN (2006)

16

Find this presentation and more on: www.sswm.info

.

1. Concept

Examples: Biogas Appliances

Biogas cooking stove

M. WAFLER Chang Mai

Biogas lamp Anaerobic Digestion of Solid Waste Biogas boiler Mini biogas generator Large combined heat and power (CHP) Cogeneratio n plant

http://www.power.alstom.com/home/new_plants/steam/products/steam_turbines/refe rences/_files/file_40796_97389.jpg

17

Find this presentation and more on: www.sswm.info

.

2. How the Digestion of Green Waste optimises SSWM

Anaerobic digestion is a promising answer to the soaring crises of municipal waste explosion and thus prevent the pollution of water sources and the evnvironment Green Waste Biogas is an renewable energy and has the potential to replace other fuel sources. Biogas contributes to prevent and lower greenhouse gas emission.

Coocking Lightning Biogas Heating Electricity Fertiliser Agriculture Digested sludge can substitute chemical fertiliser and enhance food production

Anaerobic Digestion of Solid Waste

Fuel

Sustainable development:

Improved healthImproved economy 18

Find this presentation and more on: www.sswm.info

.

3. Design Principals

Basics: Process Parameters

The biogas yield depends on the process and the substrate.

Substrate: •High COD (Chemical Oxygen Demand) = High potential of biogas generation Process: Anaerobic digestion = Biological system of bacteria Optimal conditions required that bacteria feel wealthy… •Temperature ◦ Performance ◦ Retention time •pH ◦ Wide range, but methanogenesis requires neutrality (6.5-7.5) ◦ Multistage process for better pH and temperature control •Total solid (TS) and moisture ◦ ◦ Wet digestion (TS < 20 %): easier to maintain, good fluidity Dry digestion (TS > 20 %): sophisticated but safes space Anaerobic Digestion of Solid Waste 19

Find this presentation and more on: www.sswm.info

.

4. Examples of Applications

The ARTI compact biogas plant

Developed in 2003 ARTI = Appropriate Rural Technology Institute 2000 plants currently used in Maharashtra, India (WRAPAI 2009) Some have been constructed in Tanzania (VOEGELI & LOHRI 2009) Floating-drum design: • 2 conventional polyethylene tanks (0.75 and 1 m 3 ). (MUELLER 2007) • Standard plumber piping.

• The smaller tank is the gasholder and the larger holds the mixture of decomposing feedstock and water • Inlet and an overflow • Overflow liquid is mixed with the feedstock and back recycled into the plant to maintain optimal moisture condition. (MUELLER 2007) • A pipe takes the biogas to a collection balloon or directly to the kitchen. Anaerobic Digestion of Solid Waste

Source: HEEB (2009) Source: VOEGELI & LOHRI (2009)

20

Find this presentation and more on: www.sswm.info

.

4. Examples of Applications

The BIOTECH Plant (1/2)

BIOTECH is a nodal agency of the Ministry of Non-Conventional Energy Sources in Kerala, South India. (MUELLER 2007) Domestic plants: 1 m 3 needs. (MUELLER 2007) for a 3 to 5 member-family meets about 50 % of cooking Decentralised treatment of market waste, municipal solid waste or slaughterhouse waste: Biogas used for public street lightning and distributed into households

Source: HEEB (2009)

Anaerobic Digestion of Solid Waste

Source: HEEB (2009) Source: HEEB (2009)

21

Find this presentation and more on: www.sswm.info

.

4. Examples of Applications

The BIOTECH Plant (2/2)

• • • Conventional floating-drum reactor Liquids are mixed with incoming feedstock and re-circulated A baffle in the middle increases solids retention

Source: HEEB (2009)

Schematic plan of a BIOTECH market level plant. a) Inlet tank for feedstock. b) Digester tank. c) Effluent tank. d) Effluent storage tank. e) Effluent pump. f) Gasholder drum. The drum is stabilized by a guide pole in the middle and is floating in a water jacket outside the digester. g) Biogas pipe. h) Gas Scrubber. i) Biogas generator j) Drainage connection for excess effluent. (HEEB 2009) Anaerobic Digestion of Solid Waste 22

Find this presentation and more on: www.sswm.info

.

4. Examples of Applications

The KOMPOGAS Plant

Thermophilic dry digestion process developed in Switzerland Organic wastes come from municipalities with source separation or from food industry Horizontal plug-flow reactors Propellers move the sludge trough the reactor and keep particles in suspension. (OSTREM 2004) Retention time is 20 days. (MES et al. 2003) Biogas is transformed in a CHP unit providing 100 % of the facility needs as well as additional electricity for sale. In some cases, the biogas is upgraded to natural gas standards for use in vehicles or input to the natural gas network. (OSTREM 2004) Both liquid and solid effluents are commercialised fertilisers Anaerobic Digestion of Solid Waste 23

Find this presentation and more on: www.sswm.info

.

4. Examples of Applications

Large-scale Plant in Thailand for Municipal Waste (1/2)

In Thailand, where the development of alternative sources is critical to energy sustainability as the government has set 2011 as the target date for 80 % of the nation’s total energy, representing an estimated 1,900 MW, to be generated from renewable energy sources.

(MUELLER 2007) This has given large rise to various large-scale biogas projects.

The Rayong Municipality has constructed plant for the treatment of the organic fraction of the municipal solid waste (MSW) with a capacity of 60 tons of waste per day.

Two systems: •Digesters: converts waste to biogas and fertilizer •A biogas-fired cogeneration process (CHP) Anaerobic Digestion of Solid Waste

MUELLER (2007) MUELLER (2007)

24

Find this presentation and more on: www.sswm.info

.

4. Examples of Applications

Large-scale Plant in Thailand for Municipal Waste (1/2)

Process: Wet fed-batch high-solids digestion Feedstock: Organic MSW and refuses from the food industry.

Capacity: 60 tons per day Output: 5800 tons organic fertilizer and electricity of about 5 million kWh.

(MUELLER 2007) Anaerobic Digestion of Solid Waste 25

Find this presentation and more on: www.sswm.info

.

5. Applicability

Anaerobic digestion can transform almost any biodegradable waste into biogas (e.g. green waste).

The anaerobic treatment of organic solid waste is applicable everywhere where there is a need for biogas and waste treatment and the technical conditions allow the installation of a plant.

Small-scale (biogas generation for cooking and lightening) – low-cost and relatively low-tech: • Household-level • Community-level • Institutional-level Large-scale – high-tech, requires expert design: • Industrial plant connected to the public power and heat grid.

Low-tech (un-heated plants), however, are only adapted to areas where temperature does not fall short of for any substantial length of time.

Anaerobic Digestion of Solid Waste 26

Find this presentation and more on: www.sswm.info

.

6. Pros’ and Cons’

• • • • • •

Advantages:

Generation of biogas and fertilizer (almost complete retention of the fertiliser nutrients (N, P and K) Reduction of greenhouse gas emissions through methane recovery Combined treatment of different organic waste and wastewaters Reduction of solids to be handled (e.g. less excess sludge) Good pathogen removal depending on temperature Process stability (high-loads can be treated but anaerobic sludge can also be preserved for prolonged periods without any feeding) • • • • •

Disadvantages:

Small- and middle-scale anaerobic technology for the treatment of solid waste in middle- and low-income countries is still relatively new Experts are required for the design and construction, depending on scale may also for operation and maintenance Reuse of produced energy (e.g. transformation into, fire/light, heat and power) needs to be established High sensitivity of methanogenic bacteria to a large number of chemical compounds Sulphurous compounds can lead to odour 27 Anaerobic Digestion of Solid Waste

Find this presentation and more on: www.sswm.info

.

7. References

BRUYN, J. de, HOUSE, H., RODENBURG, J. (2006): Ontario Large Herd Operators European Anaerobic Digestion Tour Report. Germany, Denmark and the Netherlands August 21 to 29, 2006. Ontario Ministry of Agriculture, Food and Rural Affairs FAO (1996): Biogas Technology - A Training Manual for Extension. Consolidated Management Services Nepal (P) Ltd. and Food and Agriculture Organization of the United Nations (FAO) Available at: http://www.fao.org/docrep/008/ae897e/ae897e00.HTM [Accessed: 19.04.2010] GTZ (2009): Biogas sanitation for black water or brown water, or excreta treatment and reuse in developing countries. Draft Version.(=Technology review). Eschborn: German Agency for Technical Cooperation GmbH (GTZ) and Sustainable Sanitation Alliance (SuSanA) Available at: http://www.gtz.de/en/themen/umwelt-infrastruktur/wasser/9397.htm [Accessed: 11.03.2010] HEEB, F. (2009): Decentralised anaerobic digestion of market waste. Case study in Thiruvananthapuram, India. Duebendorf: Swiss Federal Institute of Aquatic Science and Technology (EAWAG). Available at: http://www.eawag.ch/organisation/abteilungen/sandec/publikationen/publications_swm/downloads_swm/ad_market_waste.pdf [Accessed: 27.04.2010] HOLLIGER, C. (2008): Microbiologie et Biotechnologie Environnementale. Enseignements au 2iE. Swiss Federal Institute of Technologies (EPFL) ISAT/GTZ (1999): Biogas Basics. (=Biogas Digest, Volume I). Information and Advisory Services on Appropriate Technology (ISAT) and German Agency for Technical Cooperation GmbH (GTZ). Available at: http://www2.gtz.de/dokumente/bib/04-5364.pdf [Accessed: 19.04.2010] MES, T.Z.D. de, STAMS, A.J.M, REITH, J.H., ZEEMAN, G. (2003): Chapter 4. Methane production by anaerobic digestion of wastewater and solid wastes. In: REITH, J.H., WIJFFELS, R.H., BARTEN, H.(Eds.) (2003): Biomethane and Biohydrogen. Status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation and the Netherlands Agency for Energy and the Environment (Novem). Available at: http://gasunie.eldoc.ub.rug.nl/FILES/root/2003/3339875/3339875.pdf [Accessed: 25.04.2010] MUELLER, C. (2007): Anaerobic Digestion of Biodegradable Solid Waste in Low- and Middle-Income Countries. Swiss Federal Institute of Aquatic Science (EAWAG), Department of Water and Sanitation in Developing Countries (SANDEC) http://www.eawag.ch/organisation/abteilungen/sandec/publikationen/publications_swm/downloads_swm/Anaerobic_Digestion_high_resolution.pdf [Accessed: 27.04.2010] MUENCH, E. (2008): Overview of anaerobic treatment options for sustainable sanitation systems. In: BGR Symposium „Coupling Sustainable Sanitation and Groundwater Protection“ 14 – 17 Oct 2008, Hannover, Germany. Eschborn: German Agency for Technical Cooperation (GTZ) GmbH Available at: http://www.gtz.de/en/dokumente/en-bgr-conference-biogas-ecosan-muench-2008.pdf [Accessed: 23.04.2010] OSTREM, K. (2004): Greening Waste: Anaerobic Digestion for treating the organic Fraction of Municipal Solid Wastes. Master theis. Colombia: The Fu Foundation of School of Engineering and Applied Science, Columbia University PIPOLI, T. (2005): Feasibility of Biomass-based Fuel Cells for Manned Space Exploration. In: Proceedings of the Seventh Eurpean Space Power Conference, Stresa, Italy. 9 to 13 May 2005. VOEGELI & LOHRI 2009) VOEGELI, Y., ZURBRUEGG, C. (2008) Biogas in cities - A New Trend?. In: Sandec News, Vol. 9/2008. Duebendorf: Swiss Federal Institute of Aquatic Science (EAWAG) WRAPAI (2009): Document 8, Data Management Document, Appendix S 06 - Energy Research. Australia: Waste Refinery Australia Project Association Incorporated (WRAPAI) Available at: http://www.members.iinet.net.au/~nwk/wrapai/wr_se8_app_s06_energy.pdf [Accessed: 03.05.2010] YADAVA, L. S., HESSE, P. R. (1981): The Development and Use of Biogas Technology in Rural Areas of Asia (A Status Report 1981). Improving Soil Fertility through Organic Recycling. (=Project Field Document No. 10.). Food and Agriculture Organization (FAO) and United Nations Development Programme (UNEP) Anaerobic Digestion of Solid Waste 28

SSWM is an initiative supported by:

“Linking up Sustainable Sanitation, Water Management & Agriculture”

Anaerobic Digestion of Solid Waste

Compiled by:

29