Transcript Document
Find (3x 2 x)dx . 1. x x c 3 2 4. 6 x 1 c 2. 3 3 2 x x c 2 5. 0% 0% 5 0% 4 0% 3 0% 2 2 x 3 x c 2 Don’t know 1 3. Find sin 3xdx . 1. 1 cos 3x c 3 4. 3 cos 3x c 2. 1 cos 3 x c 3 0% 0% 0% 5 0% 3 0% 2 1 cos 3 x 3 Don’t know 1 3. 4 5. Find 1. 1 c 5 5x 2. 5 c 5 x 1 dx . 4 x 4. 1 c 3 3x 0% 0% 0% 5 0% 3 0% 2 1 c 3 3x Don’t know 1 3. 4 5. Find e kx dx . 1. 1 kx e c kx 4. e c kx 2. 1 kx e c k 5. 1 0% 0% 0% 5 ke c 0% 3 0% kx 2 3. 4 Don’t know Integrate x 1. 1 12 x c 2 2. 2 3 2 x c 3 1 2 dx . 4. 1 12 x c 2 5. 0% 0% 5 0% 3 2x 2 c 1 1 0% 2 0% 4 Don’t know 3. Integrate 6 t dt . 1. 3. 2 32 t c 3 2 c 5. Don’t know 0% 0% 0% 0% 0% 5 3 23 t c 2 9t 3 4 2. 4. 3 c 2 2 1 4t 3 [ f ( x) g ( x)]dx f ( x)dx g ( x)dx 1. True 2. False 3. Don’t know 0% ls e no w 0% D on ’t k Fa Tr ue 0% b a a b f ( x)dx f ( x)dx 1. True 2. False 3. Don’t know 0% ls e no w 0% D on ’t k Fa Tr ue 0% Integrate (3 sin x x )dx . 1. 2 32 3 cos x x c 3 4. 3 32 3 cos x x c 2. 2 3 2 2 3 cos x x c 3 5. None of these 0% 0% 5 0% 3 0% 2 0% 1 2 32 (3 cos x x ) c 3 4 3. Integrate (t 2) 2 dt . 1. 1 (t 2) 3 c 3 2. 3 t 2t 2 4t c 3 3. 3(t 2) c 3 4. 3 0% 0% 5 0% 3 0% 2 Don’t know 0% 4 t t 4t c 3 2 1 5. 2 1. Integrate sinh tdt . cosh t c 2. cosh t c 3. sinh t c 0% 0% 5 0% 3 0% 2 Don’t know 0% 1 5. 1 c cosh t 4 4. 3 Find x 3 dx . 1. 81 c 4 3. 0 2. 81 4 9 4. 0% 0% 0% 5 1 Don’t know 0% 3 0% 2 5. 4 27 Find cos xdx . 0 2 Evaluate e x dx. 1 Evaluate e x dx . 0 Calculate the area bounded by y=2x and the x-axis between x=2 and x=4. Find the total area enclosed by the curve y=cosx and the x-axis between x=0 and x=π. Which is the correct formula for integration by parts for indefinite 1. integrals? dv du u dx dx uv v dx dx 2. dv dv u dx dx uv u dx dx 3. dv du u dx dx uv v dx dx 0% 4 0% 3 0% 2 dv dv u dx dx uv u dx dx 0% 1 4. Integrate ( x 2) sin xdx . 1. ( x 2) cos x sin x 2. ( x 2) cos x sin x 3. ( x 2) cos x sin x 4. 0% 0% 0% 5 0% 3 1 None of these 0% 2 5. 4 ( x 2) cos x sin x Find 3x e dx . 2 x 1. 3x e 6 xe 6e c 2 x x x 2. 3x 2e x 6 xex 6e x c 3. 3x 2e x 6 xex 6e x c 4. 0% 0% 0% 5 0% 3 1 Don’t know 0% 2 5. 4 3x 2e x 6 xex 6e x c Evaluate x cos xdx . 0 1 Evaluate 3x 2e x dx . 0 2 Evaluate ( x 4) cos xdx. 1 Use a suitable substitution to find cos x sin xdx . 2 1. 1 3 cos x c 3 2. cos x c 0% 0% 0% 0% 5 Don’t know 0% 4 5. 1 2 cos x c 2 3 4. 2 1 3 cos x c 3 1 3. 2 Use a suitable substitution to find 4 t sin( t 7)dt . 3 1. 4 cos(t 4 7) c 2. 3. 1 cos( t 4 7) c 4 1 4 cos( t 7) c 4 0% 0% 0% 5 1 0% 3 0% 5. 2 cos(t 7) c Don’t know 4 4 4. 4 Evaluate the integral t 2 3 sin t dt by 1 making a suitable substitution. 6 Evaluate 8 ( 3 x 2 ) dx by 1 making a suitable substitution. Which substitution would be most helpful to evaluate the integral ux x dx ? 3 2. 3. ux 2 x3 4. 0% 0% 0% 4 0% 3 None of these 2 ue 2 1 1. e x3 Which of the following is an incorrect step when finding the definite integrand 6 x 1 x dx by the substitution method. 2 0 2. 1 u du 20 4. Don't Know 5. 1 None of the above 0% 0% 0% 0% 0% 5 6 4 3. du xdx 2 3 u 1 x 2 2 1. Find 1. 6x 2 ln 2 c 3x 2 x 1 6x 2 dx 2 3x 2 x 1 . 4. ln 6x 2 c 2. 3x 2 x 1 ln c 6x 2 2 3. ln 3 x 2 x 1 c 0% 0% 0% 0% 0% 5 Don’t know 4 5. 3 2 1 2 1 Evaluate t 0 t 2 1 dt . Express 2 dx in partial fractions. 2 x x 1. 2 2 x 1 x dx 2. 3. 2 2 x x 1 dx 2 1 x x 1 dx 0% 0% 5 0% 3 0% 2 Don’t know 0% 1 5. 2 2 x x 1 dx 4 4. Express 4x 1 3x 2 5 x 2dx in partial fractions. 1. 1 9 7(3x 1) 7( x 2) dx 2. 7 7 3x 1 9( x 2) dx 3. 1 9 3x 1 7( x 2) dx 0% 0% 5 0% 3 0% 2 Don’t know 0% 1 5. 9 1 7(3x 1) 7( x 2) dx 4 4. Evaluate 3 1 1 ( x 1)(x 5)dx. Evaluate 6 1 2 x 2 xdx. If a carrot has been chopped into n small pieces and the ith piece is Δxi millimetres long, then the total length of n the string is xi . i 1 1. True 2. False 3. Don’t know 0% ls e no w 0% D on ’t k Fa Tr ue 0% If g is continuous on the interval n [m, n], then g (t )dt is a number. m 1. True 2. False 3. Don’t know 0% ls e no w 0% D on ’t k Fa Tr ue 0% If the derivatives of f and g are the same then f=g. 1. True 2. False 3. Don’t know 0% ls e no w 0% D on ’t k Fa Tr ue 0%