PowerPoint プレゼンテーション - University of Tokyo

Download Report

Transcript PowerPoint プレゼンテーション - University of Tokyo

DECIGO :
the Japanese Space Gravitational Wave Antenna
Illustration/
KAGAYA
Masaki Ando
(Department of Physics,
the University of Tokyo)
Seiji Kawamura, Takashi Nakamura, Masaki Ando, Kimio Tsubono, Naoki Seto, Kenji Numata, Takahiro Tanaka, Kazuhiro Agatsuma, Tomotada Akutsu,
Koh-suke Aoyanagi, Koji Arai, Akito Araya, Hideki Asada, Yoichi Aso, Takeshi Chiba, Toshikazu Ebisuzaki, Motohiro Enoki, Yoshiharu Eriguchi, Masa-Katsu
Fujimoto, Mitsuhiro Fukushima, Toshifumi Futamase, Katsuhiko Ganzu, Tomohiro Harada, Tomohiro Harada, Tatsuaki Hashimoto, Kazuhiro Hayama,
Wataru Hikida, Yoshiaki Himemoto, Hisashi Hirabayashi, Takashi Hiramatsu, Mizuhiko Hosokawa, Kiyotomo Ichiki, Takeshi Ikegami, Kaiki T. Inoue,
Kunihito Ioka, Koji Ishidoshiro, Takehiko Ishikawa, Hiroyuki Ito, Yousuke Itoh, Shogo Kamagasako, Nobuyuki Kanda, Nobuki Kawashima, Hiroyuki
Kirihara, Kenta Kiuchi, Werner Klaus, Shiho Kobayashi, Kazunori Kohri, Yasufumi Kojima, Keiko Kokeyama, Yoshihide Kozai, Hideaki Kudoh, Hiroo
Kunimori, Kazuaki Kuroda, Kei-ichi Maeda, Hideo Matsuhara, Yasushi Mino, Jun-ichi Miura, Osamu Miyakawa, Shinji Miyoki, Mutsuko Y. Morimoto,
Tomoko Morioka, Toshiyuki Morisawa, Shigenori Moriwaki, Shinji Mukohyama, Mitsuru Musha, Shigeo Nagano, Isao Naito, Noriyasu Nakagawa, Kouji
Nakamura, Hiroyuki Nakano, Kenichi Nakao, Shinichi Nakasuka, Erina Nishida, Atsushi Nishizawa, Yoshito Niwa, Masatake Ohashi, Naoko Ohishi, Masashi
Ohkawa, Akira Okutomi, Kenichi Oohara, Norichika Sago, Motoyuki Saijo, Masaaki Sakagami, Shin-ichiro Sakai, Shihori Sakata, Misao Sasaki, Shuichi
Sato, Takashi Sato, Masaru Shibata, Hisaaki Shinkai, Kentaro Somiya, Hajime Sotani, Naoshi Sugiyama, Hideyuki Tagoshi, Tadayuki Takahashi, Ryutaro
Takahashi, Ryuichi Takahashi, Hirotaka Takahashi, Takamori Akiteru, Tadashi Takano, Keisuke Taniguchi, Atsushi Taruya, Hiroyuki Tashiro, Masao
Tokunari, Morio Toyoshima, Shinji Tsujikawa, Yoshiki Tsunesada, Ken-ichi Ueda, Kazuhiro Yamamoto, Toshitaka Yamazaki, Jun'ichi Yokoyama, ChulMoon Yoo, Shijun Yoshida, Taizoh Yoshino
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
Contents
Introduction
Pre-conceptual Design
Science
Roadmap and R&D
Summary
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
2
Introduction
DECIGO
Deci-hertz Interferometer Gravitational Wave Observatory
bridges the gap between LISA and terrestrial detectors
–16
1/2
Strain [1/Hz ]
10
–18
10
MBH Coalescence
LISA
–20
10
–22
Resolved
Galactic
binary
Confusion noise by
Galactic binaries
10
–24
Stellar-core
Collapse
ScoX-1
(1yr)
Pulsar
(1yr)
Primordial
Background GW
(Wgw=10-14)
10
NS-NS binary
Inspiral
LIGO
DECIGO
LCGT, Ad-LIGO
–26
Gravity Gradient noise
(Terrestrial Detectors)
10
–4
10
–2
10
0
10
2
10
4
10
Frequency [Hz]
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
3
Pre-conceptual Design (1)
Pre-conceptual Design
FP-Michelson interferometer
Arm length: 1000 km
Finesse: 10
Laser
Power: 10 W
Wavelength: 532 nm
Drag-free
satellite
Arm cavity
Mirror (Test mass)
Diameter: 1 m
Mass: 100 kg
Shielded by S/C
Orbit and
constellation: TBD
PD
Laser
PD
S. Kawamura, et al.,
CQG 23 (2006) S125-S131
Drag-free satellite
Arm
cavity
Drag-free satellite
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
4
Pre-conceptual Design (2)
Sensitivity
Floor level : 2x10-24 /Hz1/2 (0.1 - 10Hz)
Noise sources
Low freq.: Acceleration noise, Radiation pressure noise
High freq.: Shot noise (7.5Hz cut-off freq. )
–18
10
]
10
1/2
10
Strain [1/Hz
–19
Lase r: 10W, 532nm
M as s: 100kg
M irror: 1m dia.
LISA
–20
–21
10
–22
10
–23
10
DECIGO
(FP type, 1000km)
–24
10
LCGT
–25
10
–4
10
–3
10
–2
10
–1
10
0
10
1
10
2
10
3
10
Frequency [Hz]
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
5
Pre-conceptual Design (3)
Interferometer Design
Transponder type vs Direct-reflection type
Compare: Sensitivity curve and Expected Science
Same detector parameters (Mirror, Laser, etc.)
Decisive factor: Binary confusion noise
–18
10
]
10
1/2
10
Strain [1/Hz
–19
Lase r: 10W, 532nm
M as s: 100kg
M irror: 1m dia.
LISA
–20
–21
10
–22
10
DECIGO
–23
4
(LISA type, 5x10 km)
10
–24
10
(FP type, 1000km)
–25
10
LCGT
DECIGO
–4
10
–3
10
–2
10
–1
10
0
10
1
10
2
10
3
10
Frequency [Hz]
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
6
Pre-conceptual Design (4)
Arm length
Cavity arm length : Limited by diffraction loss
Calculate Effective reflectivity (TEM00  TEM00)
Laser wavelength : 532nm, Mirror diameter: 1m
Optimal beam size
0
Nd:YAG laser : 532nm
Mirror diameter : 1m
Optimal beam profile
–1
10
Diffraction Loss
Ratio of available power
10
–2
10
–3
TAMA LCGT
10
LISA9
DECIGO
6
3
(5x10 m)
(1x10 m)
(300 m) (3x10 m)
–4
10
1
10
2
10
3
10
4
10
5
10
6
10
7
10
8
10
9
10
10
10
Arm Length [m]
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
7
Pre-conceptual Design (5)
Requirements
Practical force noise:
4x10-17 N/Hz1/2 per mirror
(Mirror mass: 100kg)
Frequency Noise (at 1 Hz)
First-stage stabilization: 1 Hz/Hz1/2
Stabilization gain
by common-mode arm length: 105
Common-mode rejection ratio : 105
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
8
Pre-conceptual Design (6)
Cavity and S/C control
Cavity length change
PDH error signal  Mirror position (and Laser frequency)
Relative motion between mirror and S/C
Local sensor
 S/C thruster
Displacement Signal between S/C and Mirror
S/C 1
Local
Sensor
S/C 2
Mirror
Thruster
Actuator
Displacement signal between the two Mirrors
Thruster
Fig: S. Kawamura
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
9
Pre-conceptual Design (7)
S/C thruster force
S/C orbit : TBD
(ex) Similar orbit as that of LISA
Numerical simulation of
multi-bode system
Include gravity of planets
Arm length: 1000km
Earth-like orbit,
20deg. Behind the earth
Length Change [km]
40
30
20
10
0
–10
–20
–30
–40
0
12
24
36
48
60
Time [month]
Length control is indispensable
Acceleration to be controlled:
~4x10-12 m/s2
Length Change [m]
15
10
5
0
–5
–10
Black curve: parabolic fitting
–15
0
5
10
15
20
25
30
Time [day]
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
10
Science by DECIGO (1)
Binary Inspiral
Extremely high rate
for NS-NS inspirals
Correlation
for 3 years
NS-NS (1.4+1.4Msun)
z<1 (SN>26: 7200/yr)
z<3 (SN>12: 32000/yr)
z<5 (SN>9: 47000/yr)
IMBH (1000+1000Msun)
z<1 (SN>6000)
Fig: N. Seto
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
11
Science by DECIGO (2)
Acceleration of Expansion of the Universe
Distant binary is a precise clock  Monitor Doppler shift
Expansion +Acceleration?
DECIGO
GW
NS-NS (z~1)
Output
Strain
Template (No Acceleration)
Real Signal ?
Phase Delay~1sec (10 years)
Time
Seto, Kawamura, Nakamura, PRL 87, 221103 (2001)
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
12
Science by DECIGO (3)
Constraint to Dark Energy
Distance – Red shift relationship for NS-NS binaries
 Constraint to dark energy
Distance: determined directly by GW observation
Red shift: determined by identifying the host galaxies
(10 arcsec at z=1 for two far-separate DECIGOs)
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
13
Roadmap and R&D (1)
Roadmap to DECIGO
06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
R&D
Advanced R&D
PF1
Design & Fabrication
Observation
PF2
Design & Fabrication
Observation
DECIGO
06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
14
Roadmap and R&D (2)
DECIGO Pathfinder1
Single S/C with
Test mass
Laser interferometer
Drag-free system
Objectives
Drag-free system
Cavity locking in space
Modest sensitivity at 0.1 – 1 Hz
 GW observation
Details: TBD
Thruster
Local Sensor
Actuator
Fig: S. Kawamura
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
15
Roadmap and R&D (3)
DECIGO Pathfinder2
Fig: S. Kawamura
DECIGO with modest specification
Objectives
Cavity locking
between two S/C
Meaningful sensitivity
 GW observation
Drag-free satellite
Arm cavity
Details: TBD
PD
Laser
Arm cavity
PD
Drag-free satellite
Drag-free satellite
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
16
Roadmap and R&D (4)
DECIGO Simulator
Objectives
Continual free-fall environment
Clamp release
Modest sensitivity down to 0.1Hz
Possibility of long arm
Vertical Position
2m
Clamp
1 sec
Release
Hold
Release
Hold
Release
Hold
Time
Fig: S. Kawamura
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
17
Roadmap and R&D (5)
DECIGO Demonstrator
Objectives
Lock acquisition
Drag-free control demonstration
Thruster
Thruster
Satellite A
Satellite B
Mirror A
Mirror B
Actuator
Local sensor
Air-hockey table
Local sensor
Fig: S. Kawamura
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
18
Roadmap and R&D (6)
Budget
Budget request for
“Frontier of All Wavelength Gravitational Wave Astronomy”
submitted in 2005
- TAMA and CLIO
- R&D for DECIGO
- Pulsar Timing
- Super-high frequency G.W. detection
Not approved to our surprise
Try again?
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
19
Summary
DECIGO will have an extremely good sensitivity
and open the GW window widely.
DECIGO requires
extremely challenging technology development.
We hope that we will be able to
start the R&D for DECIGO very soon.
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)
20
End
11th Marcel Grossmann Meeting on General Relativity (July 23 - 29, 2006, Freie Universität Berlin)