Transcript Folie 1
Charmonium dynamics in heavy ion collisions Olena Linnyk 28 June 2007 Charmonium production vs absorption Initial State D J/Y Hadronization time Y‘ cC Dbar Freeze-out Quark-Gluon-Plasma ? Transport models Microscopical transport models provide the dynamical description of nonequilibrium effects in heavy-ion collisions Basic concepts of Hadron-String Dynamics • for each particle species i (i = N, R, Y, p, r, K, …) the phase-space density f i follows the transport equations pH r - rH t f i ( r , p ,t) I coll (f 1 ,f 2 ,...,f M ) p with the collision terms Icoll describing: elastic and inelastic hadronic reactions BB <-> B´B´, BB <-> B´B´m, mB <-> m´B´, mB <-> B´ formation and decay of baryonic and mesonic resonances string formation and decay (for inclusive production: BB->X, mB->X, X =many particles) • Implementation of detailed balance on the level of 1<->2 and 2<->2 reactions (+ 2<->n multi-meson fusion reactions) • Off-shell dynamics for short living states Degrees of freedom in HSD • hadrons - baryons and mesons including excited states (resonances) • strings – excited colour singlet states (qq - q) or (q – qbar) • Based on the LUND string model & perturbative QCD via PYTHIA leading quarks (q, qbar) & diquarks (q-q, qbar-qbar) pre time -ha dro ns pr ro ad h e ns __ q F qq color electric field z NOT included in the transport models presented here : o no explicit parton-parton interactions (i.e. between quarks and gluons) outside strings! o no QCD EoS for partonic phase under construction: PHSD – Parton-Hadron-String-Dynamics W. Cassing arXiv:0704.1410 Charmonium production Hard probe -> binary scaling! Charmonium production in pN 7 10 6 10 60 D+Dbar p+N 1/2 pp->J/Y+X, s =200 GeV 4 10 J/Y 3 10 Y/ 102 Br ds/dy [nb] s(s) [nb] 105 40 20 1 10 100 0 10-1 10 1/2 s [GeV] 100 -4 -2 0 2 PHENIX HSD scaled with cross section ratio sJ/Yexp = sJ/Y + B(cc->J/Y) scc + B(Y‘->J/Y) sY‘ 4 Regeneration At SPS recreation of J/Y by D-Dbar annihilation is negligible 10 -3 10 -1 1/2 Pb+Pb, s =17.3 GeV, central 10 -6 dN/dt 10 -5 10 -7 10 -8 J/Y+m->D+Dbar D+Dbar->J/Y+m 10 -2 10 -3 10 -4 J/Y+m->D+Dbar D+Dbar->J/Y+m dN/dt 10 1/2 Au+Au, s =200 GeV, central -4 5 10 time [fm/c] 15 20 5 10 15 20 time [fm/c] But at RHIC recreation of J/Y by D-Dbar annihilation is strong! Charmonium absorption Charmonium is absorbed by : Scattering on nucleons (normal nuclear absorption, as in pA) Interaction with secondary hadrons (comovers) Dissociation in the deconfined medium (suppression in QGP) Normal absorption 40 Pb+Pb, 158 A GeV In+In, 158 A GeV 30 20 10 0 0 100 200 300 . HSD Baryon absorption Glauber model NA50 2004 400 0 Baryon absorption Glauber model NA60 2005 HSD 50 Npart NA50 (QM2002): Anomalous absorption of J/Y in very central Pb+Pb 100 150 200 Npart = Discovery of QGP !? Scenarios for anomalous charmonium suppression • QGP colour screening • Comover absorption [Matsui and Satz ’86] [Gavin & Vogt, Capella et al.`97]: cC melting J/Y Digal, Fortunato, Satz hep-ph/0310354 but (!) Lattice QCD predicts (2004): J/Y can exist up to ~2 TC ! Regeneration of J/Y in QGP at TC [Braun-Munzinger, Thews, Ko et al. `01] J/Y+g <-> c+cbar+g charmonium absorption by low energy inelastic scattering with ‚comoving‘ mesons (m=p,h,r,... J/Y+m -> D+Dbar Y´ +m -> D+Dbar cC +m -> D+Dbar but (!) Comover density and meson absorption cross sections unknown Regeneration (D+Dbar->J/Y+m) Scenarios for anomalous charmonium suppression in HSD • QGP colour screening Threshold melting [Matsui and Glauber Satz ’86]model [Blaizot et al.] = geometrical cC melting Charmonia suppression sets in abruptly at J/Y threshold energy densities, where cc is melting, Digal, Fortunato, Satz Y´ is melting, hep-ph/0310354 J/Y is melting • Comover absorption Comover absorption Phase-space model cc+meson dissociation [Gavin & Vogt, for Capella et al.`97]: charmonium absorption by low energy inelastic scattering with ‚comoving‘ mesons (m=p,h,r,... J/Y+m -> D+Dbar 10 J/Y+r Y´ +m -> D+Dbar D+Dbar, D+Dbar 10 c +m -> D+Dbar C J/Y+K 1 * * 1 s [mb] s [mb] * J/Y+p but (!) butJ/Y+K(!) 10 D+Dbar Lattice QCD predicts (2004): J/Y can D +Dbar Comover density and meson exist up to ~2 TC ! absorption cross sections unknown Lattice QCD: 10 10 Regeneration of J/Y in QGP at TC 3 4.0 4.5 5.0 5.5 4.0 Regeneration (D+Dbar->J/Y+m) e(c ) =2 GeV/fm 4.5 5.0 5.5 c s [GeV] [Braun-Munzinger, Thews, Ko et al. `01] s [GeV] e(Y´) =2 GeV/fm3 3 c+cbar+g J/Y+g <-> Inverse cross sections by detailed balance! e(J/Y)=16 GeV/fm 0 * -1 0 1/2 1/2 * Comparison to data NA60, In+In, 158 A GeV QGP threshold melting NA50, Pb+Pb, 158 A GeV QGP threshold melting 1.2 1.0 0.8 0.6 HSD (s(J/Y)/s(DY)) / (s(J/Y)/s(DY))Glauber (s(J/Y)/s(DY)) / (s(J/Y)/s(DY))Glauber Pb+Pb and In+In @ 158 A GeV J/Y NA60, In+In, 158 A GeV Comover absorption NA50, Pb+Pb, 158 A GeV Comover absorption 1.2 1.0 0.8 0.6 HSD 0.4 0.4 0 50 100 150 200 Npart 250 300 350 400 0 50 100 150 200 250 300 350 400 Npart In+In consistent both with threshold melting and comover absorption scenarios; Pb+Pb indicates importance of comover interaction [E.L.Bratkovskaya et al PRC69 (2004) 054903, OL et al NPA786 (2007) 183] Pb+Pb and In+In @ 158 A GeV Y´ B(Y') sY' / B(J/Y) sJ/Y Pb+Pb, 158 A GeV HSD 0.015 NA50 1997 NA50 1998-2000 Comover absorption QGP threshold melting: 3 eJ/Y =16, ec =2, eY '=2 GeV/fm c 0.010 eJ/Y =16, ec =2, eY '=6.55 GeV/fm 3 c 0.005 0.000 0 25 50 75 100 125 150 ET [GeV] Y´ data contradict threshold melting scenario with lQCD ed Au+Au @ s1/2=200 GeV Comover absorption Au+Au, s=200 GeV, PHENIX, |y|<0.35 PHENIX, 1.2<|y|<2.2 1.0 RAA(J/Y) In comover scenario, suppression at mid-y stronger than at forward y, unlike data comover absorption Space for parton phase effects 0.5 D+Dbar<-> J/Y +m 3 + ecut=1 GeV/fm D+Dbar<-> J/Y +m 0.0 0.015 B(Y') sY' / B(J/Y) sJ/Y HSD |y|<0.35 1.2<|y|<2.2 0.010 0.005 0.000 0 100 200 Npart 300 0 100 200 Npart 300 [OL et al arXiv:0705.4443] Au+Au @ s1/2=200 GeV Threshold melting Au+Au, s=200 GeV, without recombination RAA(J/Y) 1.0 + recombination D+Dbar<-> J/Y +m 3 + ecut=1 GeV/fm + recombination D+Dbar<-> J/Y +m PHENIX, |y|<0.35 PHENIX, 1.2<|y|<2.2 1.0 0.5 0.5 0.0 0.0 HSD 0.015 B(Y') sY' / B(J/Y) sJ/Y QGP threshold scenario 0.015 |y|<0.35 1.2<|y|<2.2 0.010 0.010 0.005 0.005 0.000 0.000 0 100 200 Npart 300 0 100 200 Npart 300 0 100 200 300 400 Npart Neither of the two scenarios describes PHENIX data J/Y excitation function Central 1.0 0.8 Comover + eEcut QGP + eEcut J/Y excitation function Minimal bias 1.0 Comover QGP 0.6 S S 0.6 0.8 0.4 0.4 0.2 0.2 HSD 0.0 100 1000 Ebeam, A GeV 10000 0.0 100 1000 10000 Ebeam, A GeV Comover reactions in the hadronic phase give almost a constant suppression; pre-hadronic reactions lead to a larger recreation of charmonia with Ebeam . The J/Y melting scenario with hadronic comover recreation shows a maximum suppression at Ebeam = 1 A TeV; exp. data ? Y´ excitation function B(Y ') sY' / B(J/Y) sJ/Y Central 0.012 Comover+E e cut QGP+E e cut Y ' to J/Y ratio Minimal bias Comover QGP 0.008 0.004 HSD 0.000 100 1000 Ebeam, A GeV 10000 100 1000 10000 Ebeam, A GeV Y´ suppression provides independent information on absorption vs. recreation mechanisms ! J/Y probes early stages of fireball and HSD is the tool to model it. Comover absorption and threshold melting both reproduce J/Y survival in Pb+Pb as well as in In+In @ 158 A GeV, while Y´ data favour comover absorption. Neither hadronic interactions nor colour screening satisfactory describes the data @ s1/2=200 GeV for Au+Au. Deconfined phase is clearly reached at RHIC, but a theory having the relevant/proper degrees of freedom in this regime is needed to study its properties (PHSD). arXiv:0705.4443 nucl-th/0612049 arXiv:0704.1410 Back-up slide 1 FAIR predictions Au+Au, 25 A GeV Comover absorption QGP threshold melting 3 eJ/Y =16, ec =2, eY '=6.55 GeV/fm QGP threshold melting 3 eJ/Y =16, ec =2, eY '=2 GeV/fm 1.0 S(J/Y) 0.8 B(Y') sY' / B(J/Y) sJ/Y 0.006 c 0.004 0.6 0.4 Baryon absorption Comover absorption QGP threshold melting 3 eJ/Y =16, ec =2, eY '=6.55 GeV/fm 0.2 HSD c 0.0 0 50 100 150 200 Npart 250 c 0.002 HSD 0.000 300 350 400 0 50 100 150 200 Npart 250 300 350 400 Back-up slide 2 Energy density B dN(J/Y)/dy Back-up slide 3 Rapidity 10 -3 10 -4 10 Au+Au, s=200 GeV threshold melting +energy cut comover absorption +energy cut QGP no cut comover no cut HSD central PHENIX -5 -3 -2 -1 0 y 1 2 3