Transcript Warm Up
Chapter 10 Adding and Subtracting Polynomials CHAPTER 10.1 Vocabulary Polynomial ◦ Expression whose terms are of the form where k is a nonnegative integer. Standard form 2 x 5x 4 x 7 3 Degree 2 ◦ Exponent of the variable for each term Degree of a polynomial ◦ The largest degree of its terms Leading coefficient ◦ The coefficient of the first term ax k Classifying Polynomials Polynomial Degree Classified by degree 6 0 Constant Classified by number of terms Monomial -2x 1 Linear Monomial 3x + 1 1 Linear Binomial -x² + 2x – 5 2 Quadratic Trinomial 4x³ - 8x 3 Cubic Binomial 2x 4 - 7x³ - 5x + 1 4 Quartic Polynomial Adding Polynomials 1) 2x 2 x 5 x x 6 2 2x x 5 x x 6 2 2 3x 2 x 1 2 x 2x 7) (3x 7 4x) (4x 8 x ) 3 2 2 2 3 5 x x 2 x 7 3x 7 4 x 4 x 8 x 3 2 4 x 9 x 5x 6 2) (5x 3 2 2 2 3 Subtracting Polynomials 1) 2x 3 5x x 8 2x 3x 4 2 3 2 x 5 x x 8 2 x 3x 4 3 2 3 5x 4 x 12 2 2 2) ( x 8) (7 x 4x ) 2 2 x 8 7 x 4x 2 3x 7 x 8 2 2 3) (3x 5x 3) (2 x x 4) 2 2 3x 5 x 3 2 x x 4 x2 4x 7 2 Adding and Subtracting Polynomials (9x x 7 x) ( x 6x 2x 9) (4x 3x 8) 4 2 3 2 3 9 x x 7 x x 6 x 2 x 9 4 x 3x 8 4 2 3 2 9 x 3x 7 x 6 x 17 4 3 2 3 Chapter 10.2 Multiplying Polynomials Multiply the Polynomials Use the distributive property 2) x(9 x 4 x 3) 2 1) (12x)(12x 11) (12x)(12x) (12x)(11) 144x 132x 2 3) (2 x 7 y)(8xy) (2 x)(8xy) (7 y)(8xy) 16x y 56xy 2 2 x(9 x ) x(4 x) x(3) 9 x 3 4 x 2 3x 2 4) 11xy(2 x 3 y 2 ) 11xy(2 x) (11xy)(3 y ) 2 22x y 33xy 2 3 Multiply the Polynomials Use the distributive property 9x(3x 9x 11) 2 (9x)(3x ) (9x)(9x) (9x)(11) 27x 3 81x 2 99x 5) 2 6) (11x)(5x 8x 9 x 8) 3 2 (11x)(5x ) (11x)(8x ) (11x)(9x) (11x)(8) 55x 4 88x 3 99x 2 88x 3 2 (x + 2)(x – 3) x x 2 x² 2x -3x -3 -6 x² - x – 6 (3x + 4)(x + 5) 3x 4 x 3x² 4x 5 15x 20 3x² + 19x +20 (3x + 4)(2x + 1) 3x 4 2x 6x² 8x 1 3x 4 6x² + 11x +4 (3x + 10)(2x + 6) 3x 10 2x 6x² 20x 18x 60 6 6x² + 38x +60 (4x² - 3x – 1)(2x – 5) 2x -5 4x² 8x³ -20x² -3x -6x² 15x -1 -2x 5 8x³ - 26x² + 13x + 5 (x – 2)(5 + 3x - x²) x -2 5 5x -10 3x 3x² -6x -x² -x³ 2x² -x³ + 5x² - x – 10 Special Products of Polynomials CHAPTER 10.3 (x + 3)² = (x + 3)(x + 3) x x 3 x² 3x 3x 3 9 x² + 6x + 9 (3x + 4)² = (3x + 4)(3x + 4) 3x 4 3x 9x² 12x 12x 16 4 9x² + 24x + 16 (x – 2)² = (x – 2)(x – 2) x x -2 x² -2x -2x -2 4 x² - 4x + 4 (2x – 7y)² = (2x – 7y)(2x – 7y) 2x -7y 2x 4x² -14xy -14xy 49y² -7y 4x² - 28x + 49y² Dividing Polynomials CHAPTER 11.7 1) Divide 12x² - 20x + 8 by 4x. 12x 20x 8 12x 20x 8 4x 4x 4x 4x 2 2 2) Divide 8x + 14 by 2. 8 x 14 2 8 x 14 4 x 7 2 2 3) Divide 9c² + 3c by c. 9c 3c 9c 3c 9c 3 c c c 2 2 2 3x 5 x 4) Divide -2x² - 12x by -2x. 2 x 12x 2 x 12x x6 2x 2x 2x 2 2 5) Divide 9a² -54a – 36 by 3a. 9a 54a 36 9a 54a 36 3a 3a 3a 3a 12 3a 18 a 2 2 Factoring x² + bx + c CHAPTER 10.5 Factoring To factor x² + bx + c you need to find numbers p and q such that p+q=b and pq = c x² + bx + c = (x + p)(x + q) when p + q = b and pq = c Example: x² + 6x + 8 = (x + 4)(x + 2) 4 + 2 = 6 and 4(2) = 8 Factor x² + 3x + 2 Find the factors of 2 1 2 -1 -2 (x + 1)(x + 2) Factor x² - 5x + 6 Find the factors of 6 1 6 -1 -6 2 3 -2 -3 (x – 2)(x – 3) Factor x² - 2x – 8 Find the factors of -8 1 -8 -1 8 2 -4 -2 4 (x + 2)(x – 4) Factor x² + 7x – 18 Find the factors of -18 1 -18 -1 18 2 -9 -2 9 3 -6 -3 6 (x – 2)(x + 9) Factoring ax² + bx + c CHAPTER 10.6 Factor 2x² 2x² + 11x + 5 x 2(5) = 10 1 10 -1 2 -10 5 -2 -5 2x 1 5 10x x (x + 5)(2x + 1) Factor 3x² 3x² - 4x –- 7 3x 3(-7) = -21 1 -21 -1 21 3 -7 -3 7 x 1 -7 -7x 3x (3x – 7)(x + 1) Factor 6x² 6x² - 19x + 15 15 6(15) = 90 1 90 -1 -90 2 45 -2 -45 30 3 6 15 -3 -30 -6 -15 5 18 9 10 -5 -18 -9 -10 3x 2x -3 -5 -10x -9x (3x – 5)(2x – 3) Factor 6x² - 2x – 8 2(3x² 3x² -x –- 44) 3x 3(-4) = -12 1 -12 -1 12 2 -6 -2 6 3 -4 -3 4 x 1 -4 -4x 3x 2(3x – 4)(x + 1) Factoring Special Products CHAPTER 10.7 Factoring Special Products Difference of Two Squares ◦ a² - b² = (a + b)(a – b) ◦ 9x² - 16 = (3x + 4)(3x – 4) Perfect Square Trinomial ◦ ◦ ◦ ◦ a² + 2ab + b² = (a + b) ² x² + 8x + 16 = (x + 4) ² a² - 2ab + b² = (a – b) ² x² - 12x + 36 = (x – 6) ² Difference of Two Squares 1. m² - 4 (m + 2)(m – 2) 2. 4p² - 25 (2p + 5)(2p – 5) 3. 50 – 98x² 2(25 – 49x²) 2(5 + 7x)(5 – 7x) Perfect Square Trinomial 1. x² - 4x + 4 (x – 2)² 2. 16y² + 24y + 9 (4y + 3)² 3. 3x² - 30x + 75 3(x² - 10x + 25) 3(x – 5)² Factoring Using the Distributive Property CHAPTER 10.8 Factoring Completely 1. Find the GCF 2. Factor out the GCF 3. Factor the remaining terms Practice 1) 14x 21x 4 2 7 x (2 x 3) 2 2 4) 4 x 3 20x 2 24x 4x( x 5x 6) 4 x( x 2)(x 3) 2 2 2 x 8 2) 2 2( x 4) 3) 2 x 2 8 2( x 4) 2( x 4)(x 4) 2 5) 45x 4 20x 2 5x (9 x 4) 2 5x (3x 2)(3x 2) 2 2 Factor by Grouping 1. Group terms 2. Factor each group 3. Use distributive property Practice 1) 6( x 1) 7( x 1) 2) 2 x( x 4) 7( x 4) (2 x 7)(x 4) (6 7)(x 1) 13( x 1) 3) x3 2 x 2 3x 6 ( x 2x ) (3x 6) 2 x ( x 2) 3( x 2) 2 ( x 3)(x 2) 3 2 4) x 3 2 x 2 9 x 18 ( x 2x ) (9x 18) 2 x ( x 2) 9( x 2) 3 2 ( x 9)(x 2) 2