Transcript Slide 1

The Kondo effect in
multiple quantum dot systems
and deformable molecules
A. Ramšak*
J. Mravlje
T. Rejec*
R. Žitko
J. Bonča*
*
Department of Physics
Faculty of Mathematics and Physics
University of Ljubljana
Outline
(1) Conductance
(2) Kondo in a single quantum dot
(3) Methods
(4) Double quantum dots
(5) Triple quantum dots
(6) Deformable molecules
(7) Center-of-mass motion
(8) Summary
I
A
Conductance
Vsd ~ 
I
G
 G(Vgate )
 Vsd
Vgate ~ 
n
2
1
Vg

I
A
Conductance
Vsd ~ 
I
G
 G(Vgate )
 Vsd
Vgate ~ 
n
2
1
Vg

Non-interacting systems: U=0
n
2
1


dot ()
1
0.8
0.6
0.4
0.2
0
0.5
1

1.5
2
2.5

3
Non-interacting systems: U=0
n
2
1


G( )  dot () 

2e2
G( ) [
]
h
1
0.8
0.6
0.4
0.2
0
0.5
1
1.5
2
2.5

3
The Anderson model: U > 0
d U
d



U 0


2e2
G( ) [
]
h
1
0.8
0.6

0.4
0.2
0
0
0.5
1
1.5
2
2.5

3

U 0


U
 ( )
1
0.8
0.6

0.4

0.2
0
00
0.5
1
 or 
1.5
22

2.5
2.5

33

T
U 0



T
TK
U
2e2
G( ) [
]
h
1
0.8
0.6

0.4

0.2
0
00
0.5
1
 or 
1.5
22

2.5
2.5

33
The Kondo effect in a quantum dot
d U
 ()

d
0
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
d

d U
The Kondo effect in a quantum dot
d U

d
 ()
1
TK 
U e
2
d

 d (  d U )
d U
U
The Kondo effect in a quantum dot
The Kondo effect in a quantum dot
The Kondo effect in a quantum dot
The Kondo effect in a quantum dot

A( d  U / 2, )

d U / 2
“Ring system”
1
“Open system”
“Open system”
IF open system is Fermi liquid
the GS energy of a large ring
system is an universal function
of flux
T. Rejec and A. Ramšak, PRB 68, 033306 (2003); 68 035342 (2003)
N

1
N  4n  1(3); Nel  even
N
1
N  4n  1(3); Nel  odd
g  G / G0
Linear conductance from the ground-state energy
T 0
See also: J. Favand and F. Mila (Phys. J. 1998); O. Sushkov (PRB 2001); R. Molina et al. (PRB 2003)
Linear conductance from the ground-state energy
T 0
Linear conductance from the ground-state energy
T 0
Aharonov – Bohm rings
Broken time-reversal symmetry
T. Rejec and A. Ramšak, PRB 68, 033306 (2003)
The Kondo effect in a quantum dot
numerical tests…
U=0
The Kondo effect in a quantum dot: finite temperature
T
low T
U=0
high T
The Kondo effect in a quantum dot: finite temperature
T
low T
high T
The Kondo effect in a quantum dot: finite temperature
T
low T
high T
Fingerprints of Kondo…
A( d  U / 2, )

d U / 2
    t1 / t
2
M loc  S / Smax
Fingerprints of Kondo…
A( d  U / 2, )

d U / 2
    t1 / t
2
M loc  S / Smax
Fingerprints of Kondo…
A( d  U / 2, )

d U / 2
    t1 / t
2
Fingerprints of Kondo…
A( d  U / 2, )

d U / 2
    t1 / t
2
M loc  S / Smax
Multiple quantum dot systems
Chan et al, Nanotechnology 15, 609 (2004)
Elzerman et al, PRB 67, 16308 (2003)
QD
QD
Electrostatic gates
Vidan et al, Applied Phys. Lett. 85, 3602 (2004)
Double quantum dot
t2  t12  t''
Double quantum dot
(a) t2
U

(b) t2

 d  t2
J RKKY  2TK

U
V 0
  
2
t12
(c) J  4
 2TK
U
t2  t12  t''
Double quantum dot
(a) t2
U

(b) t2

 d  t2

U
V 0
  
2
t12
(c) J  4
 TK
U
(d) t2  0 & V ~ U : SU (4) Kondo
(a) t2
U

(b) t2

 d  t2

U
V 0
  
2
t12
(c) J  4
 TK
U
(d) t2  0 & V ~ U : SU (4) Kondo
half filling: n  2
Also for finite hibridization: TK [SU (4)] ~ U TK [SU (2)]
J. Mravlje, A. Ramšak, and T. Rejec, Phys. Rev. B 73, 241305(R) (2006)
hibridization
Double quantum dot
 S1 S2
1 Kondo
U / t12  3
AFM
U / t12  50
2 Kondo
U / t12  60
t
t
Double quantum dot
 S1 S2
1 Kondo
U / t12  3
AFM
U / t12  50
2 Kondo
U / t12  60
t
t
Double quantum dot
 S1 S2
1 Kondo
U / t12  3
AFM
U / t12  50
2 Kondo
U / t12  60
t
t
Other topologies: local singlet vs the Kondo effect
A. Ramšak, J. Mravlje, R. Žitko, and J. Bonča, quant-ph/0608065.
Thermal equilibrium: A-B spin corelations
T/J
2
4t
J
U
S ASB
B/J
Zero magnetic field, thermal equilibrium
B  0, T  const.
2
4t
A J 
U
B
Zero magnetic field, temperature
A
B
J /U
4t 2
J
U
Zero magnetic field, temperature
A
B
J /U
4t 2
J
U
Zero magnetic field, temperature
A
B
Jc2
J /U
Zero magnetic field, temperature
A
B
J /U
J c3 ~
Triple quantum dot
 d  2t2
d
 d  2t2

Triple quantum dot
 d  2t2
d U
d
 d  2t2 
Triple quantum dot

d

Triple quantum dot


d

Triple quantum dot



d

Triple quantum dot
U / t2  1
2
5
10
20
Triple quantum dot
t  ~ T1K
Triple quantum dot
t  ~ T1K
Triple quantum dot
t  ~ J
t  ~ T1K
Triple quantum dot
t  ~ J
J ~ 2T1K
t  ~ T1K
Triple quantum dot
Deformable molecules
Deformable molecules
e
Deformable molecules
e
Change in:
• local energy
• hopping matrix elements
H. Park et al. Nature 407 (2000)
…
Modeling
Old knowledge …
Isolated molecule:
H   d n  Unn  a a  M (n 1)(a  a )


Ueff  E(2)  2E(1)  U  2 M 2 
M ,
d
molecule attached to the leads: Lang & Firsov transformation:
~
1
M ( a  a )( n1)
H  U HU, U  e
the result:
M ,
d
Reduction of U and narrowing of the level-width
A.C. Hewson and D.M. News J.Phys C 13 (1980)
K. Schönhammer and O. Gunnarsson PRB 30 (1984)
decrease
U
negative U:
A. Taraphder and P. Coleman,
PRL 66, 2814 (1991).
M
J. Mravlje, A. Ramšak, and T. Rejec, PRB 72, 121403(R) (2005);
See also: P.S. Cornaglia, D.R. Grempel, and H. Ness, Phys. Rev. B 71, 075320 (2005),
A. Mitra, I. Aleiner, and A.J. Millis, Phys. Rev. B 79, 245302 (2004).
Molecules with a center of mass motion
J. Mravlje, A. Ramšak, and T. Rejec, submitted to PRB
Molecules with a center of mass motion
Molecules with a center of mass motion
Molecules with a center of mass motion
Molecules with a center of mass motion
Friedel sum rule:
Molecules with a center of mass motion
Friedel sum rule:
Molecules with a center of mass motion
A
B
Molecules with a center of mass motion
Molecules with a center of mass motion
Summary
• Linear conductance at T=0 can then be extracted from the GS energy:
• The Kondo effect: Low temperature destiny of quantum dots
ad summary…

U
t
d
U
d
t
g  G / G0
Formulae are exact IF the system is Fermi liquid
note:
• linear conductance
• zero temperature
• non-interacting single-channel leads
Conductance formalisms
U≠0
U=0
non-equilibrium transport: T ≠ 0, V ≠ 0
Landauer – Büttiker formula
Meir – Wingreen formula
linear response regime: T ≠ 0, V ~ 0
Kubo formula
zero-temperature linear response: T = 0, V ~ 0
In Fermi liquid systems
Fisher – Lee relation …
Proof of the method
Step 1. Conductance of a Fermi liquid system at T=0
Kubo
T=0
define (n.i.: Fisher-Lee)
‘Landauer’
Step 2. Quasiparticle hamiltonian (Landau Fermi liquid)
Step 3. Quasiparticles in a finite system
N
Step 4. Validity of the conductance formulas