Transcript Document
CS 367: Model-Based Reasoning Lecture 13 (02/26/2002) Gautam Biswas Today’s Lecture Today’s Lecture: Modeling of Continuous Systems: The Bond Graph Approach (Basics) Next Lecture: Causality and Bond Graphs State Space Equations More Complex Examples 20-sim Bond Graphs… Modeling Language (Ref: physical systems dynamics – Rosenberg and Karnopp, 1983) NOTE: The Modeling Language is domain independent… Bond Connection to enable Energy Transfer among components e B A f (directed bond from A to B). each bond: two associated variables effort, e flow, f Bond Graphs •modeling language (based on small number of primitives) •dissipative elements: R •energy storage elements: C, I •source elements: Se, Sf •Junctions: 0, 1 physical system mechanisms R forces you to make assumptions explicit C, I Se, Sf 0,1 uniform network – like representation: domain indep. Generic Variables: Signals effort, e flow, f NOTE: power = effort × flow. elec. voltage current mechanical force velocity energy = (power) dt. state/behavior of system: energy transfer between components… rate of energy transfer = power flow Energy Varibles momentum, p = e dt : flux, momentum displacement, q = f dt : charge, displacement Examples: Effort Flow Power Mechanics Force, F Velocity, V FxV F. V. Electricity Voltage, V Current, I VxI V. I Hydraulic (Acoustic) Pressure, P VolumeP x Q flow rate, Q Thermodynamics Temperature, T Entropy flow rate S (thermal flow rate) Q Pseudo bond graph Energy Q P.Q Q Constituent Relations R, C, I : passive 1-ports -- one port through which they exchange energy. R Sys R: resistor e = R•f In mechanical systems = DASHPOT F = b•V F R: b (e) V Linear F e (R constant) f non linear e (t) = R (f) • f (t) V (f) R v = i•R (Electricity) • F v R One Port Elements (continued ….) C: Capacitor F F V x C:k V x e f C P g I: Inertia P Q Q F:e F dt v x p F P = P1 - P2 P2 Q non linear q Ce V:f m x m om e n tu mp m .v F dt P1 linear F mv v1 1 F k x k v dt (C ) k m F p C i dt C e e 1 i dt C P Q Q I I V L dtdi i(t) 1 I v dt Tetrahedron of State e dt R p=edt P C X I f Integrating E, f : Power Variables ; P = e.f. P, x : Energy Variables dt x=fdt e = R.f Dissipator x=c.e Capacitor e = 1/c . x = 1/c f d t p=I.f Inductor f = 1/I . P = 1/I e d t (Instantaneous) Potential Energy Kinetic Energy Two Other 1 – Ports Effort Source Se e(t) f e(t) independent of flow f If e(t) = constant Constant Effort Source F Flow Source f(t) e f(t) independent of effort e If f(t) = constant Constant Flow Source m F Drive System Se Sf F v I:m v(t) Sf F C:k v(t) How To Connect Elements: Ideal 3 – Ports 1-junction: Common Flow junction F1 v1 1 F2 v2 F3 v3 equivalent of series junction v1 = v2 = v3 = v There is no loss of energy at Junction; net power in = net power out therefore, F3v3 = F1v1 + F2v2 i.e., F3 = F1 + F2 In general, all flows equal& e i 0 0-junction: Common Effort junction F1 v1 0 F2 v2 F3 v3 equivalent of parallel junction F1 = F2 = F3 = F There is no loss of energy at Junction; net power in = net power out therefore, F3v3 = F1v1 + F2v2 i.e., v3 = v1 + v2 In general, all efforts equal& f i 0 Ideal 3 – Port Junctions v F1 F2 v2 F3 F2 V1 = V2 = V3 = V :single flow var. F3 – F1 = F2 or, F1 + F2 = F3 algebraic sum of effort vars = 0 F1 v1 1 F3 k v3 F(t) b m P2 C:k P1 P3 No power loss b:R F(t) Fs Fm Fd 0 F(t).v Fs .v Fd .v Fm .v 0 1 F(t) Se I:m 0 – junction: dual of the 1 – junction Common Force Junction V1 V2 V3 = V1 – V2 = rate of compression R F1 F3 v3 F2 F1 v1 1 Q3 F1 = F2 = F3 = F V3 = V1 – V2 .P3 Q1 .P1 P2 P1 P2 P3 F2 v2 common effort sums of flow = 0 Q2 P Q P Q P Q 0 1 1 2 2 3 3 Others: 2 – Port Elements Transformers e1 e2 TF f1 f2 b a e2 = (b/a) . e1 f1 = (b/a) . f2 & Gyrators e1 GY f1 Again: e1 . f1 = (a/b) . e2 (b/a) . f2 = e2 . f2 e1 . f1 = r . f2 (1/r) . e2 = e2 . f2 r e2 f2 e1 = r . f2 r . f1 = e2 No power loss Examples: Two ports Example 1: Lever a i2 i1 • b • e1 e2 • • Example 2: Electrical Transformer F1 F1 = (b/a) . F2 V2 = (b/a) . V1 F2 V F P Example 3: Piston Q Let’s model: V1 k1 m1 V2 k2 b Se F(t) m2 V3 = V1 – V2 Example: V1 k1 m1 V2 k2 r (no friction) I:m1 C:k1 1 V1 R:b F(t) m2 I:m2 0 1 1 V2 F(t) C:k2 V3 = V1 – V2 Se 3 Components : How To Connect I:m1 C 1 V1 R I:m2 0 1 V3 Enforces the desire velocity relation. S 1 V2 e C:k2 Another example: V1 k1 k2 R m1 m1 . a = - k1x1 – k2x2 m2 . a = F(t) – R . V3 F(t) m2 I:m1 C V2 1 V1 C:k1 0 R I:m2 1 V2 F(t) Se Switch Domains R2 i2 E R4 i3 C3 i4 R2 e2 i2 I5 S e i1 = i3 = i4 E – i2 . R2 = e3 = eb E i2 1 eb 0 i 4 i2 e3 i3 C3 R4 ea i4 e5 1 i 4 I5