Transcript titel

Functional renormalization
group for the effective average
action
wide applications
particle physics

gauge theories, QCD
Reuter,…, Marchesini et al, Ellwanger et al, Litim, Pawlowski, Gies ,Freire,
Morris et al., many others

electroweak interactions, gauge hierarchy problem
Jaeckel,Gies,…

electroweak phase transition
Reuter,Tetradis,…Bergerhoff,
wide applications
gravity

asymptotic safety
Reuter, Lauscher, Schwindt et al, Percacci et al, Litim, Fischer
wide applications
condensed matter

unified description for classical bosons
CW, Tetradis , Aoki, Morikawa, Souma, Sumi, Terao , Morris , Graeter,
v.Gersdorff, Litim , Berges, Mouhanna, Delamotte, Canet, Bervilliers,

Hubbard model
Baier,Bick,…, Metzner et al, Salmhofer et al,
Honerkamp et al, Krahl,

disordered systems Tissier, Tarjus ,Delamotte, Canet
wide applications
condensed matter

equation of state for CO2

liquid He4

frustrated magnets

nucleation and first order phase transitions
Gollisch,…
Seide,…
and He3
Kindermann,…
Delamotte, Mouhanna, Tissier
Tetradis, Strumia,…, Berges,…
wide applications
condensed matter

crossover phenomena

superconductivity ( scalar QED3 )
Bornholdt, Tetradis,…
Bergerhoff, Lola, Litim , Freire,…

non equilibrium systems
Delamotte, Tissier, Canet, Pietroni
wide applications
nuclear physics

effective NJL- type models
Ellwanger, Jungnickel, Berges, Tetradis,…, Pirner, Schaefer,
Wambach, Kunihiro, Schwenk,

di-neutron condensates
Birse, Krippa,

equation of state for nuclear matter
Berges, Jungnickel …, Birse, Krippa
wide applications
ultracold atoms

Feshbach resonances Diehl, Gies, Pawlowski ,…, Krippa,

BEC
Blaizot, Wschebor, Dupuis, Sengupta
unified description of
scalar models for all d and N
Flow equation for average potential
Scalar field theory
Simple one loop structure –
nevertheless (almost) exact
Infrared cutoff
Wave function renormalization and
anomalous dimension
for Zk (φ,q2) : flow equation is exact !
Scaling form of evolution equation
On r.h.s. :
neither the scale k
nor the wave function
renormalization Z
appear explicitly.
Scaling solution:
no dependence on t;
corresponds
to second order
phase transition.
Tetradis …
unified approach
 choose
N
 choose d
 choose initial form of potential
 run !
Flow of effective potential
Ising model
CO2
Experiment :
S.Seide …
T* =304.15 K
p* =73.8.bar
ρ* = 0.442 g cm-2
Critical exponents
Critical exponents , d=3
ERGE
world
ERGE
world
Solution of partial differential equation :
yields highly nontrivial non-perturbative
results despite the one loop structure !
Example:
Kosterlitz-Thouless phase transition
Essential scaling : d=2,N=2


Flow equation
contains correctly
the nonperturbative
information !
(essential scaling
usually described by
vortices)
Von Gersdorff …
Kosterlitz-Thouless phase transition
(d=2,N=2)
Correct description of phase with
Goldstone boson
( infinite correlation length )
for T<Tc
Running renormalized d-wave superconducting
order parameter κ in doped Hubbard model
T<Tc
κ
Tc
T>Tc
C.Krahl,…
- ln (k/Λ)
macroscopic scale 1 cm
Renormalized order parameter κ and
gap in electron propagator Δ
in doped Hubbard model
100 Δ / t
κ
jump
T/Tc
Temperature dependent anomalous dimension η
η
T/Tc
convergence and errors





for precise results: systematic derivative
expansion in second order in derivatives
includes field dependent wave function
renormalization Z(ρ)
fourth order : similar results
apparent fast convergence : no series
resummation
rough error estimate by different cutoffs and
truncations
including fermions :
no particular problem !
changing degrees of freedom
Antiferromagnetic order
in the Hubbard model
A functional renormalization group study
T.Baier, E.Bick, …
Hubbard model
Functional integral formulation
next neighbor interaction
U>0:
repulsive local interaction
External parameters
T : temperature
μ : chemical potential
(doping )
Fermion bilinears
Introduce sources for bilinears
Functional variation with
respect to sources J
yields expectation values
and correlation functions
Partial Bosonisation
collective bosonic variables for fermion bilinears
 insert identity in functional integral
( Hubbard-Stratonovich transformation )
 replace four fermion interaction by equivalent
bosonic interaction ( e.g. mass and Yukawa
terms)
 problem : decomposition of fermion interaction
into bilinears not unique ( Grassmann variables)

Partially bosonised functional integral
Bosonic integration
is Gaussian
or:
equivalent to
fermionic functional integral
if
solve bosonic field
equation as functional
of fermion fields and
reinsert into action
fermion – boson action
fermion kinetic term
boson quadratic term (“classical propagator” )
Yukawa coupling
source term
is now linear in the bosonic fields
Mean Field Theory (MFT)
Evaluate Gaussian fermionic integral
in background of bosonic field , e.g.
Effective potential in mean field
theory
Mean field phase diagram
for two different choices of couplings – same U !
Tc
Tc
μ
μ
Mean field ambiguity
Tc
Artefact of
approximation …
Um= Uρ= U/2
cured by inclusion of
bosonic fluctuations
U m= U/3 ,Uρ = 0
μ
mean field phase diagram
J.Jaeckel,…
Rebosonization and the
mean field ambiguity
Bosonic fluctuations
fermion loops
mean field theory
boson loops
Rebosonization

adapt bosonization to
every scale k such that
k-dependent field redefinition
is translated to bosonic
interaction
H.Gies , …
absorbs four-fermion coupling
Modification of evolution of couplings
…
Evolution with
k-dependent
field variables
Rebosonisation
Choose αk such that no
four fermion coupling
is generated
…cures mean field ambiguity
Tc
MFT
HF/SD
Flow eq.
Uρ/t
Flow equation
for the
Hubbard model
T.Baier , E.Bick , …,C.Krahl
Truncation
Concentrate on antiferromagnetism
Potential U depends
only on α = a2
scale evolution of effective potential
for antiferromagnetic order parameter
boson contribution
fermion contribution
effective masses
depend on α !
gap for fermions ~α
running couplings
Running mass term
unrenormalized mass term
-ln(k/t)
four-fermion interaction ~ m-2 diverges
dimensionless quantities
renormalized antiferromagnetic order parameter κ
evolution of potential minimum
κ
10 -2 λ
-ln(k/t)
U/t = 3 , T/t = 0.15
Critical temperature
For T<Tc : κ remains positive for k/t > 10-9
size of probe > 1 cm
κ
T/t=0.05
T/t=0.1
Tc=0.115
-ln(k/t)
Below the critical temperature :
Infinite-volume-correlation-length becomes larger than sample size
finite sample ≈ finite k : order remains effectively
U=3
antiferromagnetic
order
parameter
Tc/t = 0.115
temperature in units of t
Pseudo-critical temperature Tpc
Limiting temperature at which bosonic mass term
vanishes ( κ becomes nonvanishing )
It corresponds to a diverging four-fermion coupling
This is the “critical temperature” computed in MFT !
Pseudo-gap behavior below this temperature
Pseudocritical temperature
Tpc
MFT(HF)
Flow eq.
Tc
μ
Below the pseudocritical temperature
the reign of the
goldstone bosons
effective nonlinear O(3) – σ - model
critical behavior
for interval Tc < T < Tpc
evolution as for classical Heisenberg model
cf. Chakravarty,Halperin,Nelson
critical correlation length
c,β : slowly varying functions
exponential growth of correlation length
compatible with observation !
at Tc : correlation length reaches sample size !
critical behavior for order parameter
and correlation function
Mermin-Wagner theorem ?
No spontaneous symmetry breaking
of continuous symmetry in d=2 !
end