Transcript titel
Functional renormalization
group for the effective average
action
wide applications
particle physics
gauge theories, QCD
Reuter,…, Marchesini et al, Ellwanger et al, Litim, Pawlowski, Gies ,Freire,
Morris et al., many others
electroweak interactions, gauge hierarchy problem
Jaeckel,Gies,…
electroweak phase transition
Reuter,Tetradis,…Bergerhoff,
wide applications
gravity
asymptotic safety
Reuter, Lauscher, Schwindt et al, Percacci et al, Litim, Fischer
wide applications
condensed matter
unified description for classical bosons
CW, Tetradis , Aoki, Morikawa, Souma, Sumi, Terao , Morris , Graeter,
v.Gersdorff, Litim , Berges, Mouhanna, Delamotte, Canet, Bervilliers,
Hubbard model
Baier,Bick,…, Metzner et al, Salmhofer et al,
Honerkamp et al, Krahl,
disordered systems Tissier, Tarjus ,Delamotte, Canet
wide applications
condensed matter
equation of state for CO2
liquid He4
frustrated magnets
nucleation and first order phase transitions
Gollisch,…
Seide,…
and He3
Kindermann,…
Delamotte, Mouhanna, Tissier
Tetradis, Strumia,…, Berges,…
wide applications
condensed matter
crossover phenomena
superconductivity ( scalar QED3 )
Bornholdt, Tetradis,…
Bergerhoff, Lola, Litim , Freire,…
non equilibrium systems
Delamotte, Tissier, Canet, Pietroni
wide applications
nuclear physics
effective NJL- type models
Ellwanger, Jungnickel, Berges, Tetradis,…, Pirner, Schaefer,
Wambach, Kunihiro, Schwenk,
di-neutron condensates
Birse, Krippa,
equation of state for nuclear matter
Berges, Jungnickel …, Birse, Krippa
wide applications
ultracold atoms
Feshbach resonances Diehl, Gies, Pawlowski ,…, Krippa,
BEC
Blaizot, Wschebor, Dupuis, Sengupta
unified description of
scalar models for all d and N
Flow equation for average potential
Scalar field theory
Simple one loop structure –
nevertheless (almost) exact
Infrared cutoff
Wave function renormalization and
anomalous dimension
for Zk (φ,q2) : flow equation is exact !
Scaling form of evolution equation
On r.h.s. :
neither the scale k
nor the wave function
renormalization Z
appear explicitly.
Scaling solution:
no dependence on t;
corresponds
to second order
phase transition.
Tetradis …
unified approach
choose
N
choose d
choose initial form of potential
run !
Flow of effective potential
Ising model
CO2
Experiment :
S.Seide …
T* =304.15 K
p* =73.8.bar
ρ* = 0.442 g cm-2
Critical exponents
Critical exponents , d=3
ERGE
world
ERGE
world
Solution of partial differential equation :
yields highly nontrivial non-perturbative
results despite the one loop structure !
Example:
Kosterlitz-Thouless phase transition
Essential scaling : d=2,N=2
Flow equation
contains correctly
the nonperturbative
information !
(essential scaling
usually described by
vortices)
Von Gersdorff …
Kosterlitz-Thouless phase transition
(d=2,N=2)
Correct description of phase with
Goldstone boson
( infinite correlation length )
for T<Tc
Running renormalized d-wave superconducting
order parameter κ in doped Hubbard model
T<Tc
κ
Tc
T>Tc
C.Krahl,…
- ln (k/Λ)
macroscopic scale 1 cm
Renormalized order parameter κ and
gap in electron propagator Δ
in doped Hubbard model
100 Δ / t
κ
jump
T/Tc
Temperature dependent anomalous dimension η
η
T/Tc
convergence and errors
for precise results: systematic derivative
expansion in second order in derivatives
includes field dependent wave function
renormalization Z(ρ)
fourth order : similar results
apparent fast convergence : no series
resummation
rough error estimate by different cutoffs and
truncations
including fermions :
no particular problem !
changing degrees of freedom
Antiferromagnetic order
in the Hubbard model
A functional renormalization group study
T.Baier, E.Bick, …
Hubbard model
Functional integral formulation
next neighbor interaction
U>0:
repulsive local interaction
External parameters
T : temperature
μ : chemical potential
(doping )
Fermion bilinears
Introduce sources for bilinears
Functional variation with
respect to sources J
yields expectation values
and correlation functions
Partial Bosonisation
collective bosonic variables for fermion bilinears
insert identity in functional integral
( Hubbard-Stratonovich transformation )
replace four fermion interaction by equivalent
bosonic interaction ( e.g. mass and Yukawa
terms)
problem : decomposition of fermion interaction
into bilinears not unique ( Grassmann variables)
Partially bosonised functional integral
Bosonic integration
is Gaussian
or:
equivalent to
fermionic functional integral
if
solve bosonic field
equation as functional
of fermion fields and
reinsert into action
fermion – boson action
fermion kinetic term
boson quadratic term (“classical propagator” )
Yukawa coupling
source term
is now linear in the bosonic fields
Mean Field Theory (MFT)
Evaluate Gaussian fermionic integral
in background of bosonic field , e.g.
Effective potential in mean field
theory
Mean field phase diagram
for two different choices of couplings – same U !
Tc
Tc
μ
μ
Mean field ambiguity
Tc
Artefact of
approximation …
Um= Uρ= U/2
cured by inclusion of
bosonic fluctuations
U m= U/3 ,Uρ = 0
μ
mean field phase diagram
J.Jaeckel,…
Rebosonization and the
mean field ambiguity
Bosonic fluctuations
fermion loops
mean field theory
boson loops
Rebosonization
adapt bosonization to
every scale k such that
k-dependent field redefinition
is translated to bosonic
interaction
H.Gies , …
absorbs four-fermion coupling
Modification of evolution of couplings
…
Evolution with
k-dependent
field variables
Rebosonisation
Choose αk such that no
four fermion coupling
is generated
…cures mean field ambiguity
Tc
MFT
HF/SD
Flow eq.
Uρ/t
Flow equation
for the
Hubbard model
T.Baier , E.Bick , …,C.Krahl
Truncation
Concentrate on antiferromagnetism
Potential U depends
only on α = a2
scale evolution of effective potential
for antiferromagnetic order parameter
boson contribution
fermion contribution
effective masses
depend on α !
gap for fermions ~α
running couplings
Running mass term
unrenormalized mass term
-ln(k/t)
four-fermion interaction ~ m-2 diverges
dimensionless quantities
renormalized antiferromagnetic order parameter κ
evolution of potential minimum
κ
10 -2 λ
-ln(k/t)
U/t = 3 , T/t = 0.15
Critical temperature
For T<Tc : κ remains positive for k/t > 10-9
size of probe > 1 cm
κ
T/t=0.05
T/t=0.1
Tc=0.115
-ln(k/t)
Below the critical temperature :
Infinite-volume-correlation-length becomes larger than sample size
finite sample ≈ finite k : order remains effectively
U=3
antiferromagnetic
order
parameter
Tc/t = 0.115
temperature in units of t
Pseudo-critical temperature Tpc
Limiting temperature at which bosonic mass term
vanishes ( κ becomes nonvanishing )
It corresponds to a diverging four-fermion coupling
This is the “critical temperature” computed in MFT !
Pseudo-gap behavior below this temperature
Pseudocritical temperature
Tpc
MFT(HF)
Flow eq.
Tc
μ
Below the pseudocritical temperature
the reign of the
goldstone bosons
effective nonlinear O(3) – σ - model
critical behavior
for interval Tc < T < Tpc
evolution as for classical Heisenberg model
cf. Chakravarty,Halperin,Nelson
critical correlation length
c,β : slowly varying functions
exponential growth of correlation length
compatible with observation !
at Tc : correlation length reaches sample size !
critical behavior for order parameter
and correlation function
Mermin-Wagner theorem ?
No spontaneous symmetry breaking
of continuous symmetry in d=2 !
end