Transcript Slide 1

CUMHURİYET WTP
Process Calculations
Dr. A. Saatci
Cumhuriyet WTP- Coagulation
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Coagulation
2.4.1 Calculation
Number of coagulation tanks
2
The inlet flow rate in each tank is the sum of the design flow rate, the back wash water (about 2.2
%) and the supernatant from thickeners (6370 m3/d = 0,88 % about of Qinlet).
Flow rate for each coagulation tank (design):
(720.300 m3/d x 1,03) / (n.2 x 24 h/d) = 15.456 m3/h 4,29 m3/s
Retention time (design)
50 s
Water volume = 4,29 m3/s x 50 s
214 m3
Water height
5m
Dimensions
4,6 * 9,2 m
Number of propeller mixers in each compartment
2
Fixed velocity gradient G
450 s-1
Required power: P = m G2 (W/m3)
•
•
•
•
•
•
m 20°C = 1,04 x 10-3
P = 1,04 x 10 -3 x 4502
210 W/m3
Delivered power:
210 W/ m3 x 214 m3 = 44.940 W
45 kW
Power of each high speed propeller mixer 22,5
kW
• Installed power of each mixer 30 kW
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Coagulant
Coagulant
FeCl3
Dosing rate (design)
35 mg/l
Delivery consistence
40%
Density
1,42 g/cm3
Pumpability down to
-20 °C
Ferric content 13,8 %
Solution density FeCl3
0,57 Kg FeCl3 / l
35 mg FeCl3/l x 720.300 m3/d / 1000 =
25.210 Kg/d
Flow rate = 25.210 / (0,57 x 1.000) 44 m3/d
Metering pumps
2 + 1 stand-by
Design capacity of each pump
920 l/h
Pump range capacity
130 - 1.300 l/h
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Flocculation
2.5.1 Calculation
Total number of flocculation tanks
8
Pipe diameter connecting coagulation and flocculation
1.200 mm
Design flow rate for each flocculation tank:
(720.300 m3/d x 1,03) / (n.8 x 24 h/d) =3.864 m3/h 1,073 m3/s
A (pipe area) = 3,14 x D2 /4 = 3,14 x 1,22/4
1,13 m2
V = 1,073 / 1,13
0,95 m/s
Number of flocculation tanks for each treatment stream
4
Number of flocculation stages for each tank
2
Units in operation
3
Unit in maintenance
1
Flow rate for each flocculation tank:
((3.864 m3/h) / (3)) x 4 = 5.152 m3/h
85,86 m3/min
Retention time (design)
22 min
Water volume (design)
1.890 m3
Length of each tank
23 m
Width of each tank
12,6 m
Water height of each tank
6,5 m
Water volume of each tank = 23 * 12,6 * 6,5 m
1884 m3
Retention time (with 3 units in operation)
21,9 min
Retention time (with 4 units in operation)
29,3min
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Mixers calculation:
First stage
Fixed velocity gradient:
Minimum
60 s-1
Maximum
100 s-1
Required power: P = m G2 (W/m3)
m 20°C = 1,04 x 10-3
Pmin = 1,04 x 10 -3 x 602 =
Pmax = 1,04 x 10 -3 x 1002 =
Specific energy input:
Minimum
Maximum
3,7 W/m3
10,04 W/m3
3,7 W/m3
10 W/m3
Power input:
Minimum = 3,7 W/m3 x 1.884 m3 / 2 = 3.485 W
Maximum = 10 W/m3 x 1.884 m3 / 2 = 9.420 W
Number of mixers
Required power:
Minimum
3,5 kW
Maximum
9,5 kW
Rotation speed:
Minimum
4 rpm
Maximum
1
16 rpm
3,48 kW
9,42 kW
•Fixed velocity gradient:
•Minimum
40 s-1
•Maximum
50 s-1
•Required power: P = m G2 (W/m3)
 m 20°C = 1,04 x 10-3
•Pmin = 1,04 x 10 -3 x 402
1,6 W/m3
•Pmax = 1,04 x 10 -3 x 502
2,6 W/m3
•Specific energy input:
•Minimum
1,6 W/m3
•Maximum
2,6 W/m3
•Power input:
•Minimum = 1,6 W/m3 x 1.884 m3 / 2 = 1.500 W
•Maximum = 2,6 W/m3 x 1.884 m3 / 2 = 2.450 W
•Number of mixers
1
•Required power:
•Minimum
1,5 kW
•Maximum
2,5 kW
•Rotation speed:
•Minimum
4 rpm
•Maximum
12 rpm
1,5 kW
2,45 kW
•
•
•
•
•
•
•
•
•
•
•
•
Polyelectrolyte
Dosing rate (design)
0,2 mg/l
(0,2 mg /l x 720.300 m3/d) / 1000
144 Kg/d
Solution 0,2 %
Flow rate = 144 / (0,002 x 1.000) = 72 m3/d
3.000 l/h
Metering pumps
8+3
Capacity of each pump
400 l/h
Pump range capacity
50 - 500 l/h
Number of poly preparation units
2
Capacity of each unit
3.000 l/h
Material of preparation unit
AISI 304
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Clarification
2.6.1 Calculation
Total number of units
8
Number of units for each treatment stream
4
Number of units in operation (each stream)
3
Flocculator or clarifier in maintenance (each stream)
Design flow rate for each clarification unit:
((3.864 m3/h) / (3)) x 4 = 5.152 m3/h
85,86 m3/min
Surface load (design)
10 m3/m2.h
Surface (design) = 5.152 / 10
515 m2
Sedimentation area:
Length
23 m
Width
23 m
Surface
529 m2
Surface load = 5.152 / 529
9,74 m3/m2.h
Water height
5,9 m
Water volume = 529 m2 x 5,9 m
3.121 m3
Retention time = Volume/Flow rate
36,35 min
1
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Lamella packing - Module size:
Height
1,2 m
Inclination
55°
Projected sedimentation area
Packing volume = 529 m2 x 1,2 m
Total projected sedimentation area
Load rate (Hazen) = 5.152 m3/h / 8.252 m2
13 m2/ m2
635 m3
8.252 m2
0,624 m3/m2.h
Normal operation:
Number of units in operation
Flow rate for each clarification unit
Retention time = Volume/Flow rate = 3.121 /
Surface load = 3.864 / 529
Load rate (Hazen) = 3.864 m3/h / 8.252 m2
8
3.864 m3/h
3.864
48,5 min
7,3 m3/m2.h
0,47 m3/m2.h
Number of collecting troughs of each clarification unit
Total overflow length of each clarification unit:
n.8 x 23 m x n.2
368 m
8
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Calculation of sludge production
The following calculation has been made considering the maximum flow rate and the average SS concentration in t
raw water resulting by analysis.
Flow rate
720.300 m3/d
Concentration of SS in raw water
110 mg/l
Total sludge production P = P1 + P2
where:
P1 = daily production of sludge from clarifiers by precipitation of the sedimentary fraction of suspended solids (kg
SS/d).
P2 = daily production of sludge by precipitation of ferric hydroxide Fe(OH)3
Fixed removal efficiency in clarifiers
98 %
P1 = (110 x 720.300 x 0,98)
77.648 kg SS/d
P2 = Pt x C
where:
C = coefficient assumed equal to 1,1
Pt = theoretical production of Fe(OH)3
Pt = 107 Ct / 162
Ct = theoretical daily consumption of FeCl3
Ct = (35 x 720.300) / 1.000 =25.210 kgFeCl3/d
Pt = (107 / 162) x 25.210 = 16.651 kg Fe(OH)3/d
P2 = 16.651 kg/d x 1,1
18.316 kg Fe(OH)3/d
Total sludge production P = 77.648 + 18.316
Design sludge production
100.000 kg SS/d
95.964 kg SS/d
• Sludge pumping station
•
• Sludge quantity
100.000 kg SS/d
• Sludge concentration
• Sludge flow rate
m3/d
• Number of sludge pumps
stand-by
• Flow capacity of each pump:
• 6.670 m3/d / (24 h x n.8) =
• Type
mohno pump
•
1,5 %
6.670
8+4
35 m3/h
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Filtration
2.7.1 Calculation
Total number of filters
Number of treatment streams
Number of filters per stream
Flow rate per stream:
(720.300 m3/d / 24 h/d) x 1,022 / 2
32
2
16
Number of filters in operation
14
Filters in backwash cycle
2
Design flow rate for each filter:
15.336 m3/h / 14
1.095 m3/h
Filtration rate (design)
10,9 m/h
Area of each filter cell : 1.095 / 10,9
Dimensions of each filter cell:
length:
14,6 m
width:
6,85 m
Total filtration area: 14,6 m x 6,85 m x n.32
15.336 m3/h
100 m2
3.200 m2
•
•
•
•
•
•
•
•
•
•
•
•
Number of filters in operation:
Flow rate for each filter:
15.336 m3/h / 16
958,5 m3/h
Filtration rate = 958,5 m3/h / 100 m2
16
9,58 m/h
Height of filter sand
1,4 m
Height of filter gravel
0,1 m
Grain size of filter sand
0,6-1,2 mm
Grain size of filter gravel
6,0-8,0 mm
Total volume of sand = 1.600 x 1,4
2.240 m3
Total volume of gravel = 1.600 x 0,1
160 m3
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Underdrain system
Number of nozzles per m2
Total number of nozzles = 3.200 m2 x 50
Material
PP
50
160.000
Back wash water tank
Number of back wash water tanks
2
Back wash water flow rate:
1 STEP: 20 m3/h x m2 x 100 m2
2.000 m3/h
2 STEP: 40 m3/h x m2 x 100 m2
4.000 m3/h
Back wash water volume:
1 STEP: (2.000 m3/h x 5 min) / 60 min/h
167 m3
2 STEP: (4000 m3/h x 5 min) / 60 min/h
333 m3
Water requirement for one back wash cycle: 167 + 333
Total required water volume (500 m3 * n.4)
2.000 m3
Unitary volume of upwash water tank
1.000 m3
Length of tank
19 m
Width of tank
12 m
Height of water
4,4 m
500 m3
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Back wash air blowers
Back wash air flow rate: 60 m3/h x m2 x 100 m2
6.000 m3/h
Number of air blowers (each treatment stream)
2 + 1 stand by
Capacity of each blower
3.000 Nm3/h
Head
5m
Inlet pipe diameter
350 mm
A (pipe area) = 3,14 x D2 /4 = 3,14 x 0,352/4
0,096 m2
Flow velocity : Q/A = (6.000 m3/h) / 0,096 m2 x 3600 s
17,4 m/s
Back wash water pumps
Number of back wash water pumps (each stream)
Type double suction dry pit pump
Capacity of each back wash water pump
Head
10 m
Back wash water pipe diameter
700 mm
A (pipe area) = 3,14 x D2 /4 = 3,14 x 0,72/4
1 STEP Flow velocity :
Q/A = (2.000 m3/h) / 0,385 m2 x 3600 s
2 STEP Flow velocity :
Q/A = (4.000 m3/h) / 0,385 m2 x 3600 s
2 + 1 stand by
2.000 m3/h
0,385 m2
1,44 m/s
2,88 m/s
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Wash water recovery tank
Number of wash water recovery tanks
2
Total water volume required: 500 m3 x n.4 back washing
Unitary volume
1.000 m3
Length of each tank
37 m
Width of each tank
10 m
Height of water
2,8 m
2.000 m3
Daily volume of wash water to return to flash mixing tanks:
500 m3 x n.32 filters
16.000 m3/d
% of water to return to flash mixing tanks:
16.000 m3/d / 720.000 m3/d
2,2 %
Wash water recovery pumps
Number of wash water recovery pumps
Capacity of each water recovery pump
Head
15 m
Type:
submersible pump
2 + 2 stand by
558 m3/h
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Filter gallery drainage pumps
The drainage pit of the filter gallery will collect the water from the bottom drainage of the filters
when the operators needs to put one of them in maintenance. The flow is conveyed into the wash
water recovery tank. If a spillage will occur, this will be collected by 2 open channels along the filter
walls and connected to the main drainage system.
Each line will be equipped with:
Maximum outlet flow from the filter bottom drainage
130 m3/h (it decreases 2,5 m3/h
each 0,1m)
Number of drainage pumps
1 + 1 stand by and duty assistance
Capacity of each water recovery pump
72 m3/h
Head
10 m
Type:
submersible pump
Pit volume
38 m3
(1)
2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Post-chlorination
Pipe diameter for each treatment line
1800 mm
Flow rate for each pipe:
(720.000 m3/d / 2 / 84600)
4,17 m3/s
A (pipe area) = 3,14 x D2 /4 = 3,14 x 1,82/4 2,54 m2
V =4,17 / 2,54
1,64 m/s
Maximum dosing rate (design) 5 mg/l
(5 mg Cl2/l x 720.000 m3/d) / 1.000 = 3600 kg Cl2/d 150 kg Cl2/h
Number of lines:
2
Number of vacuum chlorinators
4+1 stand by
Vacuum chlorinators capacity
40 Kg/h
(The chlorinators are sized according to Addendum No.2, Clause 11 and verified and accepted by
E.M.I.T.)
(1)
•
Ph adjustment
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Pipe diameter for each treatment line
1.800 mm
Agent Ca(OH)2
Delivery strength
75 %
Dosing rate (design) 15 mg/l
Solution (lime milk preparation)
10 % w/v
In line dilution
with water
Solution (dosing)
5 % w/v
Consumption:
(15 mg Ca(OH)2/l x 720.000 m3/d)/1.000 = 10.800 kg Ca(OH)2/d
10.800 / 0,75 = 14.400 kg Ca(OH)2/d
600 kg Ca(OH)2/h
600 kg Ca(OH)2/h x 10 % w/v
6.000 l/h
Number of slurry preparation tanks 2
Materialconcrete
Unitary volume
25 m3
Dimensions
3 * 3 * 3 (h) m
Useful height
2,8 m
Autonomy
8h
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Chlorination contact tank
2.9.1 Calculation
Number of contact tanks 2
Unitary volume (design) 5.500 m3
Length
49,9 m
(1)
Width
22 m
Water height 5,25 m
Unitary water volume
5.763 m3
(1)
Flow rate: (720.000 m3/d / 24 h) = 30.000 m3/h
500 m3/min
Volume to be deducted (walls, columns, weirs)
319 m3
Net volume 5.763 m3-319 m3
5.444 m3
Contact time: 5.444 * 2 m3/500 m3/min
21,7 min
(1)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Treated water tank
2.10.1 Calculation
Number of treated water tanks2
Flow rate (720.000 m3/d / 24 h)
30.000 m3/h
Total water volume required 33.000 m3
Unitary volume required
16.500 m3
Dimensions of each tank:
Length 68,9 m
Width 49,9 m
(1)
Water height
5m
Water volume of each tank
17.190 m3
Volume to be deducted (walls, columns, weirs)
651 m3
Net volume 17.190 m3-651 m3
16.539 m3
(1)
2.11
Chemical treatment
2.11.1
Calculation
Chemical
Dosing rate
Storage period
(mg/l)
(months)
Ferric chloride (40%)
65
0,5
Polyelectrolyte
0,2
6
Lime - 75% Ca(OH)2
15
1
Potassium
2
2
20
1
permanganate
(only provision)
Powered activated carbon
(only provision)
The space has been based on the dosage rates at the maximum plant output.
A 10 % circulation area has been foreseen as shown in the drawings.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
A) Chlorine
No. of vacuum chlorinators:
Vacuum chlorinators total capacity: 240 Kg/h
Evaporator maximum capacity:
200 Kg/h
No. of evaporators:
2+1 stand by
Total number of chlorine drums
Capacity of each drum
Chlorine drums in operation
Chlorine drums stand-by
6+2 stand by
(1)
46
1.000 Kg
23
23
B) Ferric chloride
Dosing rate (as 100 % FeCl3)
35 mg/l
STAGE I:
Daily consumption:
(720.000 m3/d x 35 mg/l) / 1.000
25.200 kg/d / 0,57 kgFeCl3/l
Stocking capacity:
(44.200 l/d x 15 d) / 1.000
Number of ferric chloride tanks
Unitary volume
Length of each tank
Width of each tank
Useful height
STAGE I and II:
Stocking capacity:
(1.520.000 x 35 x 15) / (1.000 x 0,57 x 1.000)
Number of ferric chloride tanks: 1.400 m3 / 166 m3
25.200 kg/d
44.200 l/d
663 m3
4
166 m3
14 m
3m
4m
1.4 00m3
8
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
) Polyelectrolyte
Storage condition
dry
For flocculation
Dosing rate
0,2 mg/l
STAGE I:
Daily consumption:
(720.000 m3/d x 0,2 mg/l) / 1.000
Stocking capacity:
144 kg/d x 180 d = 25.920 kg
Specific gravity weight 0,6 kg/dm3
Volume 25.920 kg / 600 kg/m3
Space: 43,2 m3 / 2 m
Fixed storage area
STAGE I and II:
Daily consumption:
(1.520.000 m3/d x 0,2 mg/l) / 1.000
Stocking capacity:
304 kg/d x 180 d = 54.720 kg
Specific gravity weight 0,6 kg/dm3
Volume 54.720 kg / 600 kg/m3
Space:91,2 m3 / 2 m
Fixed storage area
144 kg/d
25,9 t
600 kg/m3
43,2 m3
21,6 m2
44 m2
304 kg/d
54,7 t
600 kg/m3
91,2 m3
45,6 m2
88 m2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
D) Lime - 75% Ca(OH)2
Storage condition
dry
For pH adjustment
Dosing rate
15 mg/l
STAGE I:
Daily consumption:
(720.000 m3/d x 15 mg/l) / 1.000
Stocking capacity:
10.800 kg/d x 30 d = 324.000 kg
Specific gravity weight 0,5 kg/dm3
Volume 324.000 kg / 500 kg/m3
Space: 648 m3/ 2 m
STAGE I and II:
Daily capacity:
(1.520.000 m3/d x 15 mg/l) / 1.000
Stocking capacity:
22.800 kg/d x 30 d =684.000 kg
Volume: 684.000 kg / 500 kg/ m3
Space: 1.368 m3 / 2 m
684 m2
10.800 kg/d
324 t
500 kg/m3
648 m3
324 m2
22.800 kg/d
684 t
1.368 m3
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
) Potassium permanganate (Provisional for future use)
Storage condition
Dosing rate
dry
2 mg/l
STAGE I:
Daily consumption:
(720.000 m3/d x 2 mg/l) / 1.000
Stocking capacity:
1.440 kg/d x 60 d = 86.400 kg
Specific gravity weight 0,6 kg/dm3
Volume 86.400 kg / 600 kg/m3
Space: 144 m3/ 2 m
Fixed storage area
STAGE I and II:
Daily consumption:
(1.520.000 m3/d x 2 mg/l) / 1.000
Stocking capacity:
3.040 kg/d x 60 d =182.400 kg
Volume: 182.400 kg / 600 kg/ m3
Space: 304 m3 / 2 m
152 m2
Solution preparation tanks (Stage I):
Daily consumption
1.440 kg/d
Solution concentration
4%
Solution consumption
36.000 l/d
Number of tanks
2
Unitary volume
12 m3
Dimensions
2 * 2 * 3,5 (h) m
Material concrete epoxy lined
Autonomy 8 h
Dosing pumps:
Number of pumps
Flow rate 750 l/h
Type
diaphragm
2 + 1 stand-by
1.440 kg/d
86,4 t
600 kg/m3
144 m3
72 m2
86 m2
3.040 kg/d
182,4 t
304 m3
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
) Powdered activated carbon (Provisional for future use)
Storage condition
Dosing rate
dry
20 mg/l
STAGE I:
Daily consumption:
(720.000 m3/d x 20 mg/l) / 1.000
Stocking capacity:
14.400 kg/d x 30 d = 432.000 kg
Specific gravity weight 0,6 kg/dm3
Volume: 432.000 kg / 600 kg/m3
Space: 720 m3/ 2 m
Fixed storage area
STAGE I and II:
Daily consumption:
(1.520.000 m3/d x 20 mg/l) / 1.000
Stocking capacity:
30.400 kg/d x 30 d =912.000 kg
Volume: 912.000 kg / 600 kg/ m3
Space: 1.520 m3 / 2 m
760 m2
Solution preparation tanks (Stage I):
Daily consumption
14.400 kg/d
Solution concentration
10 % w/v
Solution consumption
144.000 l/d
Number of tanks
3
Unitary volume
16 m3
Dimensions 2,5 * 2,5 * 3 (h) m
Material
concrete
Autonomy 8 h
Dosing pumps:
Number of pumps
Flow rate 3.000 l/h
Type
diaphragm
2 + 1 stand-by
14.400 kg/d
432 t
600 kg/m3
720 m3
360 m2
650 m2
30.400 kg/d
912 t
1.520 m3
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
3
SLUDGE TREATMENT LINE
3.1
Thickening
3.1.1
Calculation
Inlet parameters:
Sludge production
100.000 kg SS/d
Dry solid content
1,5 %
Specific gravity weight
1.000 kg/m3
Sludge flow rate: (100.000 kg SS/d) / (0,015 x 1.000)
Number of thickeners
2
Solid load (design)
125 kg SS/m2.d
Total surface
800 m2
Unitary surface
400 m2
Water height
4m
Diameter
22,5 m
Unitary volume: 400 m2 x 4 m
1.600 m3
Total volume:
3.200 m3
Outlet parameters:
Dry solid content
3,5 %
Specific gravity weight
1.010 kg/m3
Sludge flow rate: (100.000 kg SS/d) / (0,035 x 1.010)
Supernatant flow rate: 6.670 m3/d - 2.830 m3/d
3.840 m3/d
Supernatant flow rate (filter press)
2.530 m3/d
Retention time: 3.200 m3/(6.670 m3/d + 2.530 m3/d) = 0,35 d
6.670 m3/d
2.830 m3/d
8,3 h
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Supernatant transfer pumps, thickened sludge pumps and supernatant recycle pumps
3.2.1
Calculation
Supernatant transfer pumps
Total supernatant flow rate: 3.840 m3/d + 2.530 m3/d
6.370 m3/d
Number of pumps
2 + 1 stand-by
Flow: 6.370 m3/d / 24 h 265 m3/h
Capacity of each pump: 135 m3/h
Head
15 m
Type
submersible pump
Thickened sludge pump
Sludge flow rate
Total flow
118 m3/h
Flow per pump
Number of pump
Type
mohno pump
2.830 m3/d
60 m3/h
2 + 1 stand-by
Filtrates recycle pumps
Filtrates flow rate: (2.530 m3/d) / (24 h)
105 m3/h
Capacity of each pump:
130 m3/h
Head
10 m
Number of pumps
1 + 1 stand-by
Type
submersible pump
(1)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Conditioning tank
3.3.1 Calculation
Sludge flow rate: 2.830 m3/d / 60 min x 24 h 1,96 m3/min
Contact time 15 min
Volume required
30 m3
Number of conditioning tanks
1
Total volume 50 m3
Height
3,5 m
Dimensions
3,8 * 3,8 m
Material
concrete
Number of mixers
1 + 1 stand-by (not installed)
Installed power 7,5 kW
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
3.4
Filter presses
3.4.1
Calculation
Outlet parameters:
SS quantity
100.000 kg SS/d
SS production due to lime addition
24.000 kg SS/d
Sludge production
124.000 kg SS/d
Design dry solid content
35 %
Specific gravity weight
1.200 Kg/m3
Sludge flow rate: (124.000 kg SS/d) / (0,35 x 1.200)
300 m3/d
Number of filter presses
3
Size
1,5 x 2,0 m
Number of cycles per unit
8
Duration of each cycle
3h
Number of running hour: 8 cycles x 3h
24 h
Sludge flow rate for each cycle: 300 m3/d / 8 cycles/ 3 units
12.500
Cake thickness
35 mm
Chamber volume
78,85
Number of plates
158
Supernatant flow rate: 2.830 m3/d - 300 m3/d
2.530 m3/d