Transcript Slide 1
CUMHURİYET WTP Process Calculations Dr. A. Saatci Cumhuriyet WTP- Coagulation • • • • • • • • • • • • • • • • Coagulation 2.4.1 Calculation Number of coagulation tanks 2 The inlet flow rate in each tank is the sum of the design flow rate, the back wash water (about 2.2 %) and the supernatant from thickeners (6370 m3/d = 0,88 % about of Qinlet). Flow rate for each coagulation tank (design): (720.300 m3/d x 1,03) / (n.2 x 24 h/d) = 15.456 m3/h 4,29 m3/s Retention time (design) 50 s Water volume = 4,29 m3/s x 50 s 214 m3 Water height 5m Dimensions 4,6 * 9,2 m Number of propeller mixers in each compartment 2 Fixed velocity gradient G 450 s-1 Required power: P = m G2 (W/m3) • • • • • • m 20°C = 1,04 x 10-3 P = 1,04 x 10 -3 x 4502 210 W/m3 Delivered power: 210 W/ m3 x 214 m3 = 44.940 W 45 kW Power of each high speed propeller mixer 22,5 kW • Installed power of each mixer 30 kW • • • • • • • • • • • • • • • Coagulant Coagulant FeCl3 Dosing rate (design) 35 mg/l Delivery consistence 40% Density 1,42 g/cm3 Pumpability down to -20 °C Ferric content 13,8 % Solution density FeCl3 0,57 Kg FeCl3 / l 35 mg FeCl3/l x 720.300 m3/d / 1000 = 25.210 Kg/d Flow rate = 25.210 / (0,57 x 1.000) 44 m3/d Metering pumps 2 + 1 stand-by Design capacity of each pump 920 l/h Pump range capacity 130 - 1.300 l/h • • • • • • • • • • • • • • • • • • • • • • • • Flocculation 2.5.1 Calculation Total number of flocculation tanks 8 Pipe diameter connecting coagulation and flocculation 1.200 mm Design flow rate for each flocculation tank: (720.300 m3/d x 1,03) / (n.8 x 24 h/d) =3.864 m3/h 1,073 m3/s A (pipe area) = 3,14 x D2 /4 = 3,14 x 1,22/4 1,13 m2 V = 1,073 / 1,13 0,95 m/s Number of flocculation tanks for each treatment stream 4 Number of flocculation stages for each tank 2 Units in operation 3 Unit in maintenance 1 Flow rate for each flocculation tank: ((3.864 m3/h) / (3)) x 4 = 5.152 m3/h 85,86 m3/min Retention time (design) 22 min Water volume (design) 1.890 m3 Length of each tank 23 m Width of each tank 12,6 m Water height of each tank 6,5 m Water volume of each tank = 23 * 12,6 * 6,5 m 1884 m3 Retention time (with 3 units in operation) 21,9 min Retention time (with 4 units in operation) 29,3min • • • • • • • • • • • • • • • • • • • • • • • • • • Mixers calculation: First stage Fixed velocity gradient: Minimum 60 s-1 Maximum 100 s-1 Required power: P = m G2 (W/m3) m 20°C = 1,04 x 10-3 Pmin = 1,04 x 10 -3 x 602 = Pmax = 1,04 x 10 -3 x 1002 = Specific energy input: Minimum Maximum 3,7 W/m3 10,04 W/m3 3,7 W/m3 10 W/m3 Power input: Minimum = 3,7 W/m3 x 1.884 m3 / 2 = 3.485 W Maximum = 10 W/m3 x 1.884 m3 / 2 = 9.420 W Number of mixers Required power: Minimum 3,5 kW Maximum 9,5 kW Rotation speed: Minimum 4 rpm Maximum 1 16 rpm 3,48 kW 9,42 kW •Fixed velocity gradient: •Minimum 40 s-1 •Maximum 50 s-1 •Required power: P = m G2 (W/m3) m 20°C = 1,04 x 10-3 •Pmin = 1,04 x 10 -3 x 402 1,6 W/m3 •Pmax = 1,04 x 10 -3 x 502 2,6 W/m3 •Specific energy input: •Minimum 1,6 W/m3 •Maximum 2,6 W/m3 •Power input: •Minimum = 1,6 W/m3 x 1.884 m3 / 2 = 1.500 W •Maximum = 2,6 W/m3 x 1.884 m3 / 2 = 2.450 W •Number of mixers 1 •Required power: •Minimum 1,5 kW •Maximum 2,5 kW •Rotation speed: •Minimum 4 rpm •Maximum 12 rpm 1,5 kW 2,45 kW • • • • • • • • • • • • Polyelectrolyte Dosing rate (design) 0,2 mg/l (0,2 mg /l x 720.300 m3/d) / 1000 144 Kg/d Solution 0,2 % Flow rate = 144 / (0,002 x 1.000) = 72 m3/d 3.000 l/h Metering pumps 8+3 Capacity of each pump 400 l/h Pump range capacity 50 - 500 l/h Number of poly preparation units 2 Capacity of each unit 3.000 l/h Material of preparation unit AISI 304 • • • • • • • • • • • • • • • • • • • • • Clarification 2.6.1 Calculation Total number of units 8 Number of units for each treatment stream 4 Number of units in operation (each stream) 3 Flocculator or clarifier in maintenance (each stream) Design flow rate for each clarification unit: ((3.864 m3/h) / (3)) x 4 = 5.152 m3/h 85,86 m3/min Surface load (design) 10 m3/m2.h Surface (design) = 5.152 / 10 515 m2 Sedimentation area: Length 23 m Width 23 m Surface 529 m2 Surface load = 5.152 / 529 9,74 m3/m2.h Water height 5,9 m Water volume = 529 m2 x 5,9 m 3.121 m3 Retention time = Volume/Flow rate 36,35 min 1 • • • • • • • • • • • • • • • • • • • • Lamella packing - Module size: Height 1,2 m Inclination 55° Projected sedimentation area Packing volume = 529 m2 x 1,2 m Total projected sedimentation area Load rate (Hazen) = 5.152 m3/h / 8.252 m2 13 m2/ m2 635 m3 8.252 m2 0,624 m3/m2.h Normal operation: Number of units in operation Flow rate for each clarification unit Retention time = Volume/Flow rate = 3.121 / Surface load = 3.864 / 529 Load rate (Hazen) = 3.864 m3/h / 8.252 m2 8 3.864 m3/h 3.864 48,5 min 7,3 m3/m2.h 0,47 m3/m2.h Number of collecting troughs of each clarification unit Total overflow length of each clarification unit: n.8 x 23 m x n.2 368 m 8 • • • • • • • • • • • • • • • • • • • • • • • • • Calculation of sludge production The following calculation has been made considering the maximum flow rate and the average SS concentration in t raw water resulting by analysis. Flow rate 720.300 m3/d Concentration of SS in raw water 110 mg/l Total sludge production P = P1 + P2 where: P1 = daily production of sludge from clarifiers by precipitation of the sedimentary fraction of suspended solids (kg SS/d). P2 = daily production of sludge by precipitation of ferric hydroxide Fe(OH)3 Fixed removal efficiency in clarifiers 98 % P1 = (110 x 720.300 x 0,98) 77.648 kg SS/d P2 = Pt x C where: C = coefficient assumed equal to 1,1 Pt = theoretical production of Fe(OH)3 Pt = 107 Ct / 162 Ct = theoretical daily consumption of FeCl3 Ct = (35 x 720.300) / 1.000 =25.210 kgFeCl3/d Pt = (107 / 162) x 25.210 = 16.651 kg Fe(OH)3/d P2 = 16.651 kg/d x 1,1 18.316 kg Fe(OH)3/d Total sludge production P = 77.648 + 18.316 Design sludge production 100.000 kg SS/d 95.964 kg SS/d • Sludge pumping station • • Sludge quantity 100.000 kg SS/d • Sludge concentration • Sludge flow rate m3/d • Number of sludge pumps stand-by • Flow capacity of each pump: • 6.670 m3/d / (24 h x n.8) = • Type mohno pump • 1,5 % 6.670 8+4 35 m3/h • • • • • • • • • • • • • • • • • • • Filtration 2.7.1 Calculation Total number of filters Number of treatment streams Number of filters per stream Flow rate per stream: (720.300 m3/d / 24 h/d) x 1,022 / 2 32 2 16 Number of filters in operation 14 Filters in backwash cycle 2 Design flow rate for each filter: 15.336 m3/h / 14 1.095 m3/h Filtration rate (design) 10,9 m/h Area of each filter cell : 1.095 / 10,9 Dimensions of each filter cell: length: 14,6 m width: 6,85 m Total filtration area: 14,6 m x 6,85 m x n.32 15.336 m3/h 100 m2 3.200 m2 • • • • • • • • • • • • Number of filters in operation: Flow rate for each filter: 15.336 m3/h / 16 958,5 m3/h Filtration rate = 958,5 m3/h / 100 m2 16 9,58 m/h Height of filter sand 1,4 m Height of filter gravel 0,1 m Grain size of filter sand 0,6-1,2 mm Grain size of filter gravel 6,0-8,0 mm Total volume of sand = 1.600 x 1,4 2.240 m3 Total volume of gravel = 1.600 x 0,1 160 m3 • • • • • • • • • • • • • • • • • • • Underdrain system Number of nozzles per m2 Total number of nozzles = 3.200 m2 x 50 Material PP 50 160.000 Back wash water tank Number of back wash water tanks 2 Back wash water flow rate: 1 STEP: 20 m3/h x m2 x 100 m2 2.000 m3/h 2 STEP: 40 m3/h x m2 x 100 m2 4.000 m3/h Back wash water volume: 1 STEP: (2.000 m3/h x 5 min) / 60 min/h 167 m3 2 STEP: (4000 m3/h x 5 min) / 60 min/h 333 m3 Water requirement for one back wash cycle: 167 + 333 Total required water volume (500 m3 * n.4) 2.000 m3 Unitary volume of upwash water tank 1.000 m3 Length of tank 19 m Width of tank 12 m Height of water 4,4 m 500 m3 • • • • • • • • • • • • • • • • • • • • • • • • Back wash air blowers Back wash air flow rate: 60 m3/h x m2 x 100 m2 6.000 m3/h Number of air blowers (each treatment stream) 2 + 1 stand by Capacity of each blower 3.000 Nm3/h Head 5m Inlet pipe diameter 350 mm A (pipe area) = 3,14 x D2 /4 = 3,14 x 0,352/4 0,096 m2 Flow velocity : Q/A = (6.000 m3/h) / 0,096 m2 x 3600 s 17,4 m/s Back wash water pumps Number of back wash water pumps (each stream) Type double suction dry pit pump Capacity of each back wash water pump Head 10 m Back wash water pipe diameter 700 mm A (pipe area) = 3,14 x D2 /4 = 3,14 x 0,72/4 1 STEP Flow velocity : Q/A = (2.000 m3/h) / 0,385 m2 x 3600 s 2 STEP Flow velocity : Q/A = (4.000 m3/h) / 0,385 m2 x 3600 s 2 + 1 stand by 2.000 m3/h 0,385 m2 1,44 m/s 2,88 m/s • • • • • • • • • • • • • • • • • • • • • • • Wash water recovery tank Number of wash water recovery tanks 2 Total water volume required: 500 m3 x n.4 back washing Unitary volume 1.000 m3 Length of each tank 37 m Width of each tank 10 m Height of water 2,8 m 2.000 m3 Daily volume of wash water to return to flash mixing tanks: 500 m3 x n.32 filters 16.000 m3/d % of water to return to flash mixing tanks: 16.000 m3/d / 720.000 m3/d 2,2 % Wash water recovery pumps Number of wash water recovery pumps Capacity of each water recovery pump Head 15 m Type: submersible pump 2 + 2 stand by 558 m3/h • • • • • • • • • • • • • • • • Filter gallery drainage pumps The drainage pit of the filter gallery will collect the water from the bottom drainage of the filters when the operators needs to put one of them in maintenance. The flow is conveyed into the wash water recovery tank. If a spillage will occur, this will be collected by 2 open channels along the filter walls and connected to the main drainage system. Each line will be equipped with: Maximum outlet flow from the filter bottom drainage 130 m3/h (it decreases 2,5 m3/h each 0,1m) Number of drainage pumps 1 + 1 stand by and duty assistance Capacity of each water recovery pump 72 m3/h Head 10 m Type: submersible pump Pit volume 38 m3 (1) 2 • • • • • • • • • • • • • • • • Post-chlorination Pipe diameter for each treatment line 1800 mm Flow rate for each pipe: (720.000 m3/d / 2 / 84600) 4,17 m3/s A (pipe area) = 3,14 x D2 /4 = 3,14 x 1,82/4 2,54 m2 V =4,17 / 2,54 1,64 m/s Maximum dosing rate (design) 5 mg/l (5 mg Cl2/l x 720.000 m3/d) / 1.000 = 3600 kg Cl2/d 150 kg Cl2/h Number of lines: 2 Number of vacuum chlorinators 4+1 stand by Vacuum chlorinators capacity 40 Kg/h (The chlorinators are sized according to Addendum No.2, Clause 11 and verified and accepted by E.M.I.T.) (1) • Ph adjustment • • • • • • • • • • • • • • • • • • • Pipe diameter for each treatment line 1.800 mm Agent Ca(OH)2 Delivery strength 75 % Dosing rate (design) 15 mg/l Solution (lime milk preparation) 10 % w/v In line dilution with water Solution (dosing) 5 % w/v Consumption: (15 mg Ca(OH)2/l x 720.000 m3/d)/1.000 = 10.800 kg Ca(OH)2/d 10.800 / 0,75 = 14.400 kg Ca(OH)2/d 600 kg Ca(OH)2/h 600 kg Ca(OH)2/h x 10 % w/v 6.000 l/h Number of slurry preparation tanks 2 Materialconcrete Unitary volume 25 m3 Dimensions 3 * 3 * 3 (h) m Useful height 2,8 m Autonomy 8h • • • • • • • • • • • • • • • Chlorination contact tank 2.9.1 Calculation Number of contact tanks 2 Unitary volume (design) 5.500 m3 Length 49,9 m (1) Width 22 m Water height 5,25 m Unitary water volume 5.763 m3 (1) Flow rate: (720.000 m3/d / 24 h) = 30.000 m3/h 500 m3/min Volume to be deducted (walls, columns, weirs) 319 m3 Net volume 5.763 m3-319 m3 5.444 m3 Contact time: 5.444 * 2 m3/500 m3/min 21,7 min (1) • • • • • • • • • • • • • • • • • Treated water tank 2.10.1 Calculation Number of treated water tanks2 Flow rate (720.000 m3/d / 24 h) 30.000 m3/h Total water volume required 33.000 m3 Unitary volume required 16.500 m3 Dimensions of each tank: Length 68,9 m Width 49,9 m (1) Water height 5m Water volume of each tank 17.190 m3 Volume to be deducted (walls, columns, weirs) 651 m3 Net volume 17.190 m3-651 m3 16.539 m3 (1) 2.11 Chemical treatment 2.11.1 Calculation Chemical Dosing rate Storage period (mg/l) (months) Ferric chloride (40%) 65 0,5 Polyelectrolyte 0,2 6 Lime - 75% Ca(OH)2 15 1 Potassium 2 2 20 1 permanganate (only provision) Powered activated carbon (only provision) The space has been based on the dosage rates at the maximum plant output. A 10 % circulation area has been foreseen as shown in the drawings. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • A) Chlorine No. of vacuum chlorinators: Vacuum chlorinators total capacity: 240 Kg/h Evaporator maximum capacity: 200 Kg/h No. of evaporators: 2+1 stand by Total number of chlorine drums Capacity of each drum Chlorine drums in operation Chlorine drums stand-by 6+2 stand by (1) 46 1.000 Kg 23 23 B) Ferric chloride Dosing rate (as 100 % FeCl3) 35 mg/l STAGE I: Daily consumption: (720.000 m3/d x 35 mg/l) / 1.000 25.200 kg/d / 0,57 kgFeCl3/l Stocking capacity: (44.200 l/d x 15 d) / 1.000 Number of ferric chloride tanks Unitary volume Length of each tank Width of each tank Useful height STAGE I and II: Stocking capacity: (1.520.000 x 35 x 15) / (1.000 x 0,57 x 1.000) Number of ferric chloride tanks: 1.400 m3 / 166 m3 25.200 kg/d 44.200 l/d 663 m3 4 166 m3 14 m 3m 4m 1.4 00m3 8 • • • • • • • • • • • • • • • • • • • • • • • • • • • ) Polyelectrolyte Storage condition dry For flocculation Dosing rate 0,2 mg/l STAGE I: Daily consumption: (720.000 m3/d x 0,2 mg/l) / 1.000 Stocking capacity: 144 kg/d x 180 d = 25.920 kg Specific gravity weight 0,6 kg/dm3 Volume 25.920 kg / 600 kg/m3 Space: 43,2 m3 / 2 m Fixed storage area STAGE I and II: Daily consumption: (1.520.000 m3/d x 0,2 mg/l) / 1.000 Stocking capacity: 304 kg/d x 180 d = 54.720 kg Specific gravity weight 0,6 kg/dm3 Volume 54.720 kg / 600 kg/m3 Space:91,2 m3 / 2 m Fixed storage area 144 kg/d 25,9 t 600 kg/m3 43,2 m3 21,6 m2 44 m2 304 kg/d 54,7 t 600 kg/m3 91,2 m3 45,6 m2 88 m2 • • • • • • • • • • • • • • • • • • • • • • • • D) Lime - 75% Ca(OH)2 Storage condition dry For pH adjustment Dosing rate 15 mg/l STAGE I: Daily consumption: (720.000 m3/d x 15 mg/l) / 1.000 Stocking capacity: 10.800 kg/d x 30 d = 324.000 kg Specific gravity weight 0,5 kg/dm3 Volume 324.000 kg / 500 kg/m3 Space: 648 m3/ 2 m STAGE I and II: Daily capacity: (1.520.000 m3/d x 15 mg/l) / 1.000 Stocking capacity: 22.800 kg/d x 30 d =684.000 kg Volume: 684.000 kg / 500 kg/ m3 Space: 1.368 m3 / 2 m 684 m2 10.800 kg/d 324 t 500 kg/m3 648 m3 324 m2 22.800 kg/d 684 t 1.368 m3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ) Potassium permanganate (Provisional for future use) Storage condition Dosing rate dry 2 mg/l STAGE I: Daily consumption: (720.000 m3/d x 2 mg/l) / 1.000 Stocking capacity: 1.440 kg/d x 60 d = 86.400 kg Specific gravity weight 0,6 kg/dm3 Volume 86.400 kg / 600 kg/m3 Space: 144 m3/ 2 m Fixed storage area STAGE I and II: Daily consumption: (1.520.000 m3/d x 2 mg/l) / 1.000 Stocking capacity: 3.040 kg/d x 60 d =182.400 kg Volume: 182.400 kg / 600 kg/ m3 Space: 304 m3 / 2 m 152 m2 Solution preparation tanks (Stage I): Daily consumption 1.440 kg/d Solution concentration 4% Solution consumption 36.000 l/d Number of tanks 2 Unitary volume 12 m3 Dimensions 2 * 2 * 3,5 (h) m Material concrete epoxy lined Autonomy 8 h Dosing pumps: Number of pumps Flow rate 750 l/h Type diaphragm 2 + 1 stand-by 1.440 kg/d 86,4 t 600 kg/m3 144 m3 72 m2 86 m2 3.040 kg/d 182,4 t 304 m3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ) Powdered activated carbon (Provisional for future use) Storage condition Dosing rate dry 20 mg/l STAGE I: Daily consumption: (720.000 m3/d x 20 mg/l) / 1.000 Stocking capacity: 14.400 kg/d x 30 d = 432.000 kg Specific gravity weight 0,6 kg/dm3 Volume: 432.000 kg / 600 kg/m3 Space: 720 m3/ 2 m Fixed storage area STAGE I and II: Daily consumption: (1.520.000 m3/d x 20 mg/l) / 1.000 Stocking capacity: 30.400 kg/d x 30 d =912.000 kg Volume: 912.000 kg / 600 kg/ m3 Space: 1.520 m3 / 2 m 760 m2 Solution preparation tanks (Stage I): Daily consumption 14.400 kg/d Solution concentration 10 % w/v Solution consumption 144.000 l/d Number of tanks 3 Unitary volume 16 m3 Dimensions 2,5 * 2,5 * 3 (h) m Material concrete Autonomy 8 h Dosing pumps: Number of pumps Flow rate 3.000 l/h Type diaphragm 2 + 1 stand-by 14.400 kg/d 432 t 600 kg/m3 720 m3 360 m2 650 m2 30.400 kg/d 912 t 1.520 m3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3 SLUDGE TREATMENT LINE 3.1 Thickening 3.1.1 Calculation Inlet parameters: Sludge production 100.000 kg SS/d Dry solid content 1,5 % Specific gravity weight 1.000 kg/m3 Sludge flow rate: (100.000 kg SS/d) / (0,015 x 1.000) Number of thickeners 2 Solid load (design) 125 kg SS/m2.d Total surface 800 m2 Unitary surface 400 m2 Water height 4m Diameter 22,5 m Unitary volume: 400 m2 x 4 m 1.600 m3 Total volume: 3.200 m3 Outlet parameters: Dry solid content 3,5 % Specific gravity weight 1.010 kg/m3 Sludge flow rate: (100.000 kg SS/d) / (0,035 x 1.010) Supernatant flow rate: 6.670 m3/d - 2.830 m3/d 3.840 m3/d Supernatant flow rate (filter press) 2.530 m3/d Retention time: 3.200 m3/(6.670 m3/d + 2.530 m3/d) = 0,35 d 6.670 m3/d 2.830 m3/d 8,3 h • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Supernatant transfer pumps, thickened sludge pumps and supernatant recycle pumps 3.2.1 Calculation Supernatant transfer pumps Total supernatant flow rate: 3.840 m3/d + 2.530 m3/d 6.370 m3/d Number of pumps 2 + 1 stand-by Flow: 6.370 m3/d / 24 h 265 m3/h Capacity of each pump: 135 m3/h Head 15 m Type submersible pump Thickened sludge pump Sludge flow rate Total flow 118 m3/h Flow per pump Number of pump Type mohno pump 2.830 m3/d 60 m3/h 2 + 1 stand-by Filtrates recycle pumps Filtrates flow rate: (2.530 m3/d) / (24 h) 105 m3/h Capacity of each pump: 130 m3/h Head 10 m Number of pumps 1 + 1 stand-by Type submersible pump (1) • • • • • • • • • • • • • • • Conditioning tank 3.3.1 Calculation Sludge flow rate: 2.830 m3/d / 60 min x 24 h 1,96 m3/min Contact time 15 min Volume required 30 m3 Number of conditioning tanks 1 Total volume 50 m3 Height 3,5 m Dimensions 3,8 * 3,8 m Material concrete Number of mixers 1 + 1 stand-by (not installed) Installed power 7,5 kW • • • • • • • • • • • • • • • • • • • • • • • • 3.4 Filter presses 3.4.1 Calculation Outlet parameters: SS quantity 100.000 kg SS/d SS production due to lime addition 24.000 kg SS/d Sludge production 124.000 kg SS/d Design dry solid content 35 % Specific gravity weight 1.200 Kg/m3 Sludge flow rate: (124.000 kg SS/d) / (0,35 x 1.200) 300 m3/d Number of filter presses 3 Size 1,5 x 2,0 m Number of cycles per unit 8 Duration of each cycle 3h Number of running hour: 8 cycles x 3h 24 h Sludge flow rate for each cycle: 300 m3/d / 8 cycles/ 3 units 12.500 Cake thickness 35 mm Chamber volume 78,85 Number of plates 158 Supernatant flow rate: 2.830 m3/d - 300 m3/d 2.530 m3/d