Analyzing 10,000-eV dielectronic resonances with 80

Download Report

Transcript Analyzing 10,000-eV dielectronic resonances with 80

Anisotropic
dielectronic resonances
from
magnetic-dipole lines
Yuri Ralchenko
National Institute of
Standards and Technology
Gaithersburg, MD, USA
ADAS Workshop, 2013
Supported in part by the Office of Fusion Energy Sciences, U.S. DoE
Analyzing
10,000-eV dielectronic resonances
with
80-eV forbidden lines
Yuri Ralchenko
National Institute of
Standards and Technology
Gaithersburg, MD, USA
ADAS Workshop, 2013
Supported in part by the Office of Fusion Energy Sciences, U.S. DoE
Yu. Ralchenko & J.D. Gillaspy
Physical Review A 88, 012506 (2013)
Radiative recombination
Continuum
๏„๏…
Bound states
๐ด
๐‘+1 +
+ ๐‘’ โ†’ ๐ด๐‘+ + โ„Ž๐œˆ
Ion recombined
DR step 1: dielectronic capture
Continuum
๏„๏…
Bound states
๐ด
๐‘+1 +
+ ๐‘’ โ†’ ๐ด๐‘+โˆ—โˆ—
Resonant process!
๏„๏…
Dielectronic capture + autoionization
= no recombination
DC and AI are
direct and inverse
Continuum
Bound states
๐ด
๐‘+1 +
+ ๐‘’ โ†’ ๐ด๐‘+โˆ—โˆ— โ†’ ๐ด
๐‘+1 +
+๐‘’
DR step 2: radiative stabilization
Continuum
Bound states
๐ด
๐‘+1 +
Stabilizing transition:
Mostly x-rays
+ ๐‘’ โ†’ ๐ด๐‘+โˆ—โˆ— โ†’ ๐ด๐‘+โˆ— + โ„Ž๐œˆ
๏„๏…
Dielectronic recombination in plasmas
Maxwellian
Electrons are present
at all energies
โ€ฆ
Z+1
(Infinite) Series of
transitions are
to be accounted for
๏กDR ๏‚ต
๐ด๐‘Ž ๐ด๐‘Ÿ
๐ด๐‘Ž +๐ด๐‘Ÿ
๐ด๐‘Ž ~1013 โˆ’ 1014 ๐‘  โˆ’1
๐ด๐‘Ÿ โˆ ๐‘ง 4 โˆ™ 108 ๐‘  โˆ’1
Z
DR measurements on EBITs
EBIT
electron
beam
Beam
energy
Fast beam ramping
extracted
ions
1. Extract ions
2. Measure ionization distribution
Is ionization distribution the same
inside and outside the trap?..
NO!
ER
ER
ER
time
DR energy generally does not coincide
with the energy of max abundance
DR resonances with M-shell (n=3) ions
1s22s22p63s23p63dn
LMN resonances:
L electron into M,
free electron into N
Calculation of LMn DR strength: Ca-like 3d2 W54+
1s2(2s2p)83s23p63d + e ๏‚ฎ 1s2(2s2p)73s23p63d2nl
2s1/2 ๏‚ฎ 3d
2p1/2 ๏‚ฎ 3d
2p3/2 ๏‚ฎ 3d
e ๏‚ฎ 3d
e ๏‚ฎ 4l
e ๏‚ฎ 5l
Relativistic model potential
+ QED corrections
(Flexible Atomic Code, Gu 2008)
Strategy
1.
2.
3.
4.
5.
Scan electron beam energy
with a small step (a few eV)
When a beam hits a DR,
ionization balance changes
Both the populations of all
levels within an ion and the
corresponding line
intensities change as well
Measure line intensity ratios
from neighbor ions and look
for resonances
EUV lines: forbidden
magnetic-dipole lines within
the ground configuration
Ca-like W54+
Ionization potential
A(E1) ~ 1015 s-1
A(M1) ~ 105-106 s-1
I = N๏ƒ—A๏ƒ—E (intensity)
NIST Electron Beam Ion Trap
1.0
Can produce > 60-times
ionized atoms
Ar, Kr, Xe, Sn, Ti, Sm, Gd, Dy,
Er, Hf, Ta, W, Pt, Au, Bi,โ€ฆ
EBIT Electron Beam (w idth x10)
Maxw ell-Boltzmann distribution
0.8
8 keV
Normalized Cross Section
Beam energy: 0.1 keV โ€“ 30 keV
Beam resolution: ~50 eV
Beam current: โ‰ค 150 mA
Beam radius: ~30 ฮผm
Electron density: ~1012 cm-3
0.6
0.4
x10
0.2
0.0
0
20
40
60
80
100
120
140
6
Speed [10 m/s]
Monoenergetic beam
allows one to โ€œtouchโ€
dielectronic resonances
EUV spectrum of W47+-W56+: M1 lines within
3dn ground configurations
Almost all lines are M1
Good statistics
Isolated lines
Pair of lines:
(a) within 3d in K-like W55+
(b) within 3d2 in Ca-like W54+
Yu. Ralchenko et al, Phys. Rev. A 83, 032517 (2011)
[Ca]/[K]
๐‘Š 54+ 3๐‘‘ 2๐ฝ=2 โˆ’ 3๐‘‘ 2๐ฝ=3
๐‘Š 55+ 3๐‘‘3/2 โˆ’ 3๐‘‘5/2
[Ca]/[K]:
๐‘Š 54+ 3๐‘‘ 2๐ฝ=2 โˆ’ 3๐‘‘ 2๐ฝ=3
๐‘Š 55+ 3๐‘‘3/2 โˆ’ 3๐‘‘5/2
THEORY:
no DR
Modeling: CR code NOMAD, atomic data from FAC
[Ca]/[K]
๐‘Š 54+ 3๐‘‘ 2๐ฝ=2 โˆ’ 3๐‘‘ 2๐ฝ=3
๐‘Š 55+ 3๐‘‘3/2 โˆ’ 3๐‘‘5/2
THEORY:
no DR
[Ca]/[K]
๐‘Š 54+ 3๐‘‘ 2๐ฝ=2 โˆ’ 3๐‘‘ 2๐ฝ=3
๐‘Š 55+ 3๐‘‘3/2 โˆ’ 3๐‘‘5/2
THEORY:
no DR
isotropic DR
Non-Maxwellian (40-eV Gaussian)
collisional-radiative model: ~10,500 levels
[Ca]/[K]
Non-Maxwellian (40-eV Gaussian)
collisional-radiative model: ~10,500 levels
๐‘Š 54+ 3๐‘‘ 2๐ฝ=2 โˆ’ 3๐‘‘ 2๐ฝ=3
๐‘Š 55+ 3๐‘‘3/2 โˆ’ 3๐‘‘5/2
THEORY:
no DR
isotropic DR
anisotropic DR
J
atomic
level
m=+J
m=-J
degenerate
magnetic
sublevels
Impact beam electrons are monodirectional
[Ca]/[K]
Non-Maxwellian (40-eV Gaussian)
collisional-radiative model: ~18,500 levels
๐‘Š 54+ 3๐‘‘ 2๐ฝ=2 โˆ’ 3๐‘‘ 2๐ฝ=3
๐‘Š 55+ 3๐‘‘3/2 โˆ’ 3๐‘‘5/2
THEORY:
no DR
isotropic DR
anisotropic DR
J
atomic
level
m=+J
m=-J
degenerate
magnetic
sublevels
Impact beam electrons are monodirectional
[Ca]/[K]
๐‘Š 54+ 3๐‘‘ 2๐ฝ=2 โˆ’ 3๐‘‘ 2๐ฝ=3
๐‘Š 55+ 3๐‘‘3/2 โˆ’ 3๐‘‘5/2
2p3/2 ๏‚ฎ 3d
e ๏‚ฎ 4l
One EBIT run, several ionsโ€ฆ
n=4
Ca
Sc
Ti
Where are the 10-keV photons?..
2p53s23p63dn+14l
4d 4f
4p
4s
3s
3p
3d
~11keV
~8keV
2s1/2
2p1/2 2p3/2
~9keV
X-ray emission (Ge detector)
๏„n>0 transitions into the 2p3/2 hole
2p53/2-4l
B and C: horizontal
2p5
3/2-3d
2p53/2-3s
A: slant
Conclusions
โ€ข A new in situ method to measure multi-keV
dielectronic resonances in 3dn ions using ratios
of EUV magnetic-dipole lines
โ€ข First resolved measurements of LMN resonances
in ~55-times ionized W
โ€ข CR modeling shows importance of anisotropic
effects on ionization balance
โ€ข Isolated resonances allow determination of the
beam width