Transcript Document

Nens220, Lecture 4
Cables and Propagation
John Huguenard
Rate constants for gate n
• Derived from onset or offset of gK upon DV
 n  n /  n ,
 n  (1  n ) /  n
Model of gK
g K  g k n4
n
nc 


no
n
dn
  n (1  n)   n n
dt
If n  no when t  0 :
n  n  (n  no ) exp(t /  n )
where n  1/( n   n )
Wit h dn / dt  0,
obtain n to give best fit toI K 
i.e. at steady state,
obtain n fromg K /g K max
n
n
n  n
T hen n  n /  n ,
and  n  (1  n ) /  n
Cable theory
• Developed by Kelvin to describe properties of
current flow in transatlantic telegraph cables.
• The capacitance of the “membrane” leads to
temporal and spatial differences in transmembrane
voltage.
From Johnston & Wu, 1995
Current flow in membrane patch RC
circuit
m=Cm/Rm
And now in a system of membrane
patches
Components of current flow in a neurite
I L  gm (V  VL )Dx
dV
I c  cm
Dx
dt
Im  Ic  I L
gm
normalized leak conductance per unit length of neurite
V ( x  Dx)  V ( x)
I ( x) 
ri Dx
cm
normalized membrane capacitance per unit length of neurite
I ( x  Dx) 
ri
normalized internal resistance per unit length of neurite
V ( x)  V ( x  Dx)
ri Dx
I C  I L  I ( x)  I ( x  Dx)  0
Solving Kirchov’s law in a neurite
I L  gm (V  VL )Dx
dV
I c  cm
Dx
dt
^
gL
Im  Ic  I L
cm
dV
V ( x  Dx)  V ( x) V ( x)  V ( x  Dx)
Dx  g m (V  VL )Dx 

0
dt
ri Dx
ri Dx
V ( x  Dx)  V ( x)
I ( x) 
ri Dx
I ( x  Dx) 
V ( x)  V ( x  Dx)
ri Dx
I C  I L  I ( x)  I ( x  Dx)  0
Final derivation of cable equation
^
gL
cm
dV
V ( x  Dx)  V ( x) V ( x)  V ( x  Dx)
Dx  g m (V  VL )Dx 

0
dt
ri Dx
ri Dx
divide by Dx and approach limit Dx -> 0
2
dV

V ( x)
2

 (V  VL )  
0
2
dt
x
dV
1  2V ( x)
cm
 g m (V  VL ) 
0
2
dt
ri x
divide by gm
dV
1  2V ( x)

 (V  VL ) 
0
dt
ri g m x 2
1
 2
ri g m
membrane space constant,  is membrane time constant
Cable properties, unit properties
•
For membrane, per unit area
– Ri = specific intracellular resistivity (~100 W-cm)
– Rm = specific membrane resistivity (~20000 W-cm2)
• Gm =specific membrane conductivity (~0.05 mS/cm2)
•
– Cm = specific membrane capacitance (~ 1 mF/cm2)
For cylinder, per unit length:
– ri = axial resistance (units = W/cm)
• Intracellular resistance (W)= resistivity (Ri, Wcm) * length (l, cm)/ cross sectional area (πr2,
cm2)
• Resistance per length (ri,pi) = resistivity / cross sectional area = Ri/πr2 (W/cm)
– For 1 mm neurite (axon) = 100 W-cm/(π*.00005 cm2) = ~13GW/cm = 1.3 GW/mm = 1.3MW/mm
– For 5 mm neurite (dendrite) = 100 W-cm/(π*.00025cm2) = ~ 500 MW/cm = 50 MW/mm = 50kW/mm
– rm = membrane resistance (units: Wcm, divide by length to obtain total resistance)
• Rm2πr. Probably more intuitive to consider reciprocal resistance, or conductance:
–
In a neurite total conductance is Gm2πrl, i.e. proportional to membrane area (circumference * length)
• Normalized conductance per unit length (gm) = Gm2πr (S/cm)
For 1 mm neurite (axon) = 0.05 mS/cm2(2π*.00005cm) = ~16 nS/cm ~ 1.6pS/mm
» (equivalent normalized membrane resistance, rm obtained via reciprocation is ~60 Mohmcm)
– For 5 mm neurite (dendrite) = 0.05 mS/cm2(2π*.00025cm) = ~80 nS/cm ~ 8pS/mm
» (rm ~ 13 Mohm-cm)
–
– cm = membrane capacitance (units: F/cm)
• Derived as for gm, normalized capacitance per unit length = Cm2πr (F/cm)
–
–
For 1 mm neurite (axon) = 1 mF/cm2(2π*.00005cm) = ~300 pF/cm ~ 30 fF/mm
For 5 mm neurite (dendrite) = 1 mF/cm2(2π*.00025cm) = ~1.6 nF/cm ~160 fF/mm
Cable equation
• Solved for different boundary conditions
– Infinite cylinder
– Semi infinite cylinder (one end)
– Finite cylinder
 2Vm Vm

 Vm  0
2
X
T
where X  x/ , and T  t / m

rm

ri
rRm
2 Ri
 scales with square root of radius
For 1 mm neurite (axon) =sqrt(64e6/13e9) = 0.07 cm, 700 mm
For 5 mm neurite (dendrite) =sqrt(13e6/79e9) = 0.16 cm, 1600 mm
Electrotonic decay
Electrotonic decay in a neuron
Electrotonic decay in a neuron
with alpha synapse
Compartmental models
• Can be developed by combining individual
cylindrical components
• Each will have its own source of current
and EL via the parallel conductance model
• Current will flow between compartments
(on both ends) based on DV and Ri
Using Neuron
• Go to neuron.duke.edu and download a
copy
• Work through some of the tutorials
Preview: dendritic spike generation
Stuart and Sakmann, 1994, Nature 367:69