Transcript Document

2-D Ultrasonic Imaging with
Circular Array Data
Youli Quan
Stanford University
Lianjie Huang
Los Alamos National Laboratory
February, 2007
Objectives
• Study of sound-speed reconstruction capability
of an efficient time-of-flight tomography method
using synthetic data
• Lab data sound-speed reconstruction
• Reflectivity reconstruction using synthetic data
1
Circular Array
• Many research groups have developed
circular transducer arrays for acoustic
imaging:
Schreiman, Gisvold, Greenleaf & Bahn (1984)
Waag & Fedewa (2006)
Duric, Littrup, Poulo, Babkin, … (2007)
• Full apertures to improve image resolution.
2
Ultrasonic Wave Simulation for a Ring Array
Simulate ultrasonic wave propagation through
numerical breast phantoms.
200
1580
1560
150
y(mm)
•
1540
1520
100
1500
1480
50
1460
0
0
50
100
x(mm)
150
200
1440
3
Ultrasonic Wave Simulation for a Ring Array
•
Use finite-difference time-domain acoustic-wave
equation in heterogeneous media.
•
Source central frequency: 0.5 MHz
•
Grid size of the numerical phantom: 0.1 mm
•
2D grid: 2051 x 2051
•
Time signal length: 150 ms
•
Ring diameter: 20 cm
•
Take 1 hour to generate 256 common-channel data
on a 128-CPU computer cluster.
4
Simulated Ring-Array Data
0
20
Direct Wave
Time (microsecond)
40
60
80
100
120
Reflected Wave
140
50
100
150
Channel Number
200
250
5
Data Analysis and Travel-Time Picking
150
1540
0
1530
20
1520
40
y(mm)
1510
100
1500
1490
Time (microsecond)
200
60
80
100
1480
50
120
1470
140
0
1460
0
50
100
x(mm)
150
200
50
100
150
Channel Number
200
250
6
Cross-Correlation Picking and First-Break Picking
1
1
Water
Target
dT
0.5
Amplitude
0.5
Amplitude
Water
Target
0
0
-0.5
-0.5
-1
130
132
134
136
138
140
Travel time (microsecond)
-1
130
142
132
134
136
138
140
Travel time (microsecond)
142
1
Water
Target
Time Difference (microsecond)
Amplitude
0.5
0
-0.5
Correlation
First beak
0.3
0.25
0.2
0.15
0.1
0.05
0
-1
130
132
134
136
138
140
Travel time (microsecond)
142
-0.05
110
115
120
125
130
135
Channel Number
140
145
150
7
Tomographic Reconstruction of Sound-Speed
T  LS
Cd1 / 2T  Cd1 / 2 L


S
 CrS0  Cr 
•
Obtain L by tracing bent-rays using a finite-difference
scheme to solve the eikonal equation.
•
Solve the system using an algorithm for sparse linear
equations and sparse least squares.
8
Reconstruction of a Circular Object
200
1540
250
0.25
1530
150
y(mm)
1510
100
1500
1490
Transmitter
1520
200
0.2
150
0.15
0.1
100
0.05
1480
50
50
1470
50
100
x(mm)
150
200
200
1460
1540
1520
1530
1510
1510
1500
100
1490
1480
50
50
100
x (mm)
150
200
100
150
Receiver
200
250
1500
1520
150
y (mm)
50
1490
speed (m/s)
0
0
0
1480
1470
1460
1450
1470
1440
1460
1430
0
Given
Reconstruction
50
100
x(mm)
150
200
9
Reconstruction of a Square Object
200
1540
250
0.25
1530
150
y(mm)
1510
100
1500
1490
Transmitter
1520
200
0.2
150
0.15
0.1
100
0.05
1480
50
50
1470
50
100
x(mm)
150
200
200
1460
1540
1520
1530
1510
1510
1500
100
1490
1480
50
50
100
x (mm)
150
200
100
150
Receiver
200
250
1500
1520
150
y (mm)
50
sound speed (m/s)
0
0
0
1490
1480
1470
1460
1450
1470
1440
1460
1430
0
Given
Reconstruction
50
100
x(mm)
150
200
10
Reconstruction of Small Circular Object
200
250
0.05
1530
100
1500
1490
50
0.03
Transmitter
y(mm)
1510
0.04
200
1520
150
150
0.02
0.01
100
0
1480
-0.01
50
1470
0
0
50
100
x(mm)
150
-0.02
200
50
1510
200
100
150
Receiver
200
250
1520
1510
100
1500
50
1495
sound speed (m/s)
y (mm)
1500
1505
150
1490
1480
1470
1460
1450
1440
50
100
x (mm)
150
200
1490
1430
0
50
100
x(mm)
150
200
11
Reconstruction of an Off-Center Object
200
1540
250
1530
150
1520
100
1500
1490
0.2
Transmitter
1510
y(mm)
0.25
200
150
0.15
0.1
100
1480
50
0.05
50
1470
0
1460
50
100
x(mm)
150
200
200
150
50
1540
1520
1530
1510
y (mm)
1510
1500
100
1490
1480
50
1470
1460
50
100
x (mm)
150
200
100
150
Receiver
200
250
1500
1520
1490
speed (m/s)
0
0
1480
1470
1460
1450
Given
Reconstruction
1440
1430
0
50
100
x(mm)
150
200
12
Reconstruction of a Numerical Phantom
200
250
0
1560
-0.1
1540
150
200
-0.2
100
Transmitter
y(mm)
1520
1500
150
-0.3
-0.4
100
1480
-0.5
50
50
1460
0
0
50
100
x(mm)
150
-0.6
200
50
100
150
Receiver
200
250
1530
200
1560
100
1500
1480
50
sound speed (m/s)
1520
y (mm)
1520
1540
150
1510
1500
1490
Given
Reconstruction
1460
50
100
x (mm)
150
200
1480
0
50
100
x(mm)
150
200
13
Reconstruction of a Numerical Phantom
200
1560
y(mm)
1520
100
1500
Transmitter
1540
150
250
0
200
-0.2
150
-0.4
100
-0.6
1480
50
1460
0
0
50
100
x(mm)
150
200
50
-0.8
50
100
150
Receiver
200
250
200
1560
1540
150
y (mm)
1520
100
1500
1480
50
1460
50
100
x (mm)
150
200
14
Reconstruction of a Numerical Phantom
200
1560
y(mm)
1520
100
1500
Transmitter
1540
150
250
0
200
-0.2
150
-0.4
100
-0.6
1480
50
1460
0
0
50
100
x(mm)
150
200
50
-0.8
50
100
150
Receiver
200
250
200
1560
1550
150
y (mm)
1540
1530
100
1520
1510
50
1500
1490
50
100
x (mm)
150
200
15
Reconstruction of a Numerical Phantom
200
250
1560
0.2
1520
100
1500
0
Transmitter
150
y(mm)
200
1540
150
-0.2
100
-0.4
1480
50
1460
0
0
50
100
x(mm)
150
50
-0.6
50
200
100
150
Receiver
200
250
200
1560
1540
150
y (mm)
1520
100
1500
1480
50
1460
50
100
x (mm)
150
200
16
Lab Data: First-break Picks
17
Lab Data: Sound-speed Reconstruction
18
Reconstruction of a Numerical Phantom
200
1580
1.2
250
1560
1540
1520
100
1500
0.8
Transmitter
y(mm)
150
150
0.6
100
0.4
1480
50
1460
0
0
1
200
50
100
x(mm)
150
200
200
1440
50
0.2
0
50
100
150
Receiver
200
250
1580
1560
y (mm)
150
1540
1520
100
1500
1480
50
1460
50
100
x (mm)
150
200
1440
19
Patient Data: Sound-speed Reconstruction
20
Computational Time
Using 1 mm grid spacing, the Tomographic
reconstructions with 10 iterations take less than two
minutes of CPU times on a Dell xeon 3.0GHz
desktop PC.
21
Conclusions
•
The ring transducer array provides an ideal aperture
for sound-speed transmission tomography.
•
TOF transmission tomography can accurately
reconstruct the sound speed for an object > 5 .
•
For objects < 2 , the reconstruction may indicate the
existence of the object, but does not recover the
absolute value of the sound speed.
•
Reflectivity reconstruction has higher resolution than
the sound-speed reconstruction
22
Acknowledgements
•
Work was supported by U.S. DOE Laboratory-Directed
Research and Development program.
•
Data were generated using the computer clusters at
Stanford Center for Computational Earth and
Environmental Science (CEES).
•
Numerical breast phantoms were derived from
phantom and in-vivo breast data provided by
Karmanos Cancer Institute through Neb Duric.
23