codingoutloud.files.wordpress.com

Download Report

Transcript codingoutloud.files.wordpress.com

Architecting to be
Cloud Native
Aligning your application’s
architecture with the architecture
of the cloud… FTW!
But the cloud is a friendly place for
non-native apps too!
Guest lecture at Dino Konstantopoulos’ BU MET CS755 Cloud Computing class
17-April-2014 (7:00 – 9:00 PM EDT)
My name is Bill Wilder
[email protected]
blog.codingoutloud.com
@codingoutloud
www.devpartners.com
www.cloudarchitecturepatterns.com
Who is Bill Wilder?
www.bostonazure.org
www.devpartners.com
I will ass-u-me…
1. You know what “the cloud” is
2. You have an inkling about Amazon Web Services
and Windows Azure cloud platforms
3. You understand that such cloud platforms
include compute services [like hosted virtual
machines (VMs), in both IaaS and PaaS modes],
SQL and NoSQL database services, file storage
services, messaging, DNS, management, etc.
4. You are interested in understanding cloudnative applications and why that’s better than
deploying my old-school app to the cloud “as is”
Roadmap for rest of talk… …
1. Lightning-fast overview of Windows Azure
2. Cover three specific patterns for building
cloud-native applications
3. Mention some other patterns along the way
?
• Q&A during talk is okay (time permitting)
• Q&A at end with any remaining time
• Okay to reach out through email or twitter
Windows Azure Portal
General information
http://www.windowsazure.com
Management Portal
http://manage.windowsazure.com
“Bring Your Own” ____ as a Service
NIST: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
NIST Terminology
Power?
Rigidity
Simplicity
SaaS = Software as a Service (BYO users)
PaaS = Plaform as a Service (BYO apps)
IaaS = Infrastructure as a Service (BYO VMs)
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
Complexity
Flexibility
Power?
So Architecting for the (Windows Azure, AWS,
GAE, …) Cloud is Different…
But Why?
WHY DID THEY (Microsoft, Amazon, Google, …)
DO THIS TO US?
Know the rules
“If I had asked people
what they wanted,
they would have said
faster horses.”
- Henry Ford
Know the rules
“If I had asked IT
departments what
they wanted, they
would have said IaaS.”
- Henry Cloud
Cloud Platform Characteristics
• Scaling – or “resource allocation” – is horizontal
– and ∞ (“illusion of infinite resources”)
• Resources are easily added or released
– self-service portal or API; cloud scaling is automatable
• Pay only for currently allocated resources
– costs are operational, granular, controllable, and transparent
• Optimized for cost-efficiency
– cloud services are MT, hardware is commodity
– MTTR over MTTF
• Rich, robust functionality is simply accessible
– like an iceberg
Cloud-Native Application
Characteristics
• Application architecture is
aligned with the cloud platform
architecture
– uses the platform in the most natural way
– lets the platform do the heavy lifting
The term “cloud” is nebulous…
The definition of “Cloud”
is nebulous…
What is different about the cloud?
What's different about the cloud?
^
=
TTM &
Sleeping well
1/9th above water

SOA
MTBF
MTTR
Architectural
Assumptions
failure is routine
(so you better be good at
handling it)
commodity hardware
+ multitenant services
= cost-efficient cloud
Loosely Coupled &
Eventually Consistent
Data & Workflow
Architecture
This bar is
always open
*and*
Pay by the Drink
has an API
$
• Resource allocation (scaling) is:
– Horizontal
– Bi-directional
– Automatable
Resource
Allocation
The “illusion of infinite resources”
Integrated Surface Area
www.pageofphotos.com
• Simple idea, simple app
• Two-tiers: web tier (one server) + database
• What’s the problem?
?
• But… what’s WRONG with this
architecture?
• Different ≠ WRONG.
Use the right tool for the job. Some
apps are simply not good fit for cloud.
www.pageofphotos.com
• Simple idea, simple app
• Two-tiers: web tier (one server) + database
• What can go wrong
• We’ll reexamine
1.
2.
3.
4.
5.
Scaling the web tier
Scaling the service tier
Scaling the data tier
Handling failure
Operational efficiency (scale the app, not the team!)
pattern 1 of 3
Horizontal Scaling Compute Pattern
What’s the difference
between performance
and scale?
Scale Up (and Scale Down??)
vs. Horizontal Resourcing
Common Terminology:
Scaling Up/Down  Vertical Scaling
Scaling Out/In  Horizontal “Scaling”
 But really is Horizontal Resource Allocation
• Architectural Decision
– Big decision… hard to change
Vertical Scaling (“Scaling Up”)
Resources that can be “Scaled Up”
• Memory: speed, amount
• CPU: speed, number of CPUs
• Disk: speed, size, multiple controllers
• Bandwidth: higher capacity pipe
• … and it sure is EASY
.
Downsides of Scaling Up
• Hard Upper Limit
• HIGH END HARDWARE  HIGH END CO$T
• Lower value than “commodity hardware”
• May have no other choice (architectural)
Scaling Horizontally: Adding Boxes
Autonomous nodes
*and*
Homogeneous nodes
for operational simplicity
*and*
Anonymous nodes
don‘t get emotionally
involved!
Autonomous nodes
for scalability
(stateless web
servers, shared
nothing DBs, your
custom code in
QCW)
This is how the CLOUD works *and*
This is how YOUR CLOUD-NATIVE APP WORKS
Example: Web Tier
www.pageofphotos.com
Managed VMs
(Cloud Service)
Load Balancer
(Cloud Service)
Horizontal Scaling Considerations
1. Auto-Scale
• Bidirectional
2. Nodes can fail
• Auto-Scale is only one cause
• Handle shutdown signals
• Stateless (“like a taxi”)
vs. Sticky Sessions
• Stateless nodes
vs. Stateless apps
• N+1 rule
vs. occasional downtime (UX)
How many users does
your cloud-native
application need before
it needs to be able to
horizontally scale?
pattern 2 of 3
Queue-Centric Workflow Pattern
(QCW for short)
Extend www.pageofphotos.com
example into Service Tier
• QCW enables applications where the UI and
back-end services are Loosely Coupled
• (Compare to CQRS at end if there is interest)
QCW Example: User Uploads Photo
www.pageofphotos.com
Web
Server
Reliable Queue
Reliable Storage
Compute
Service
QCW
WE NEED:
• Compute (VM) resources to run our code
• Reliable Queue to communicate
• Durable/Persistent Storage
Where does Windows Azure fit?
QCW [on Windows Azure]
WE NEED:
• Compute (VM) resources to run our code
Web Roles (IIS) and Worker Roles (w/o IIS)
• Reliable Queue to communicate
Azure Storage Queues
• Durable/Persistent Storage
Azure Storage Blobs & Tables; WASD
QCW on Azure: User Uploads a Photo
www.pageofphotos.com
push
Web
Role
(IIS)
pull
Azure Queue
Worker
Role
Azure Blob
UX implications: user does not wait for thumbnail
(architecture!)
QCW enables Responsive UX
• Response to interactive users is as fast as a
work request can be persisted
• Time consuming work done asynchronously
• Comparable total resource consumption,
arguably better subjective UX
• UX challenge – how to express Async to users?
– Communicate Progress
– Display Final results
– Long Polling/Web Sockets (e.g., SignalR or Node.io)
QCW enables Scalable App
• Decoupled front/back provides insulation
–
–
–
–
–
Blocking is Bane of Scalability
Order processing partner doing maintenance
Twitter down
Email server unreachable
Internet connectivity interruption
• Loosely coupled, concern-independent scaling
– (see next slide)
– Get Scale Units right
–Key to optimizing operational CO$T$
General Case:
Many Roles, Many Queues
Web
Role
(Admin)
Web
Web
Role
Web
Role
(Public)
Role
(IIS)
(IIS)
Queue
Queue
Type 1
Type 1
Queue
Queue
Type 2
Type 2
Queue
Type 3
Worker
Worker
Role
Worker
Role
Worker
Role
Role
Type 1
Worker
Worker
Role
Worker
Role
Worker
Worker
Role
Role
Worker
Role
Worker
TypeRole
2
TypeRole
2
Type 2
Type 2
• Scaling best when Investment α Benefit
• Optimize for CO$T EFFICIENCY
• Logical vs. Physical Architecture depends on current scale
Reliable Queue & 2-step Delete
var url = “http://pageofphotos.blob.core.windows.net/up/<guid>.png”;
queue.AddMessage( new CloudQueueMessage( url ) );
(IIS)
Web
Role
Queue
Worker
Role
var invisibilityWindow = TimeSpan.FromSeconds( 10 );
CloudQueueMessage msg =
queue.GetMessage( invisibilityWindow );
(… do some processing then …)
queue.DeleteMessage( msg );
QCW requires Idempotent
• Perform idempotent operation more than
once, end result same as if we did it once
• Example with Thumbnailing (easy case)
• App-specific concerns dictate approaches
– Compensating action, Last write wins, etc.
• PARTNERSHIP: division of responsibility
between cloud platform & app
– Far cry from database transaction
QCW expects Poison Messages
• A Poison Message cannot be processed
– Error condition for non-transient reason
– Use dequeue count property
• Be proactive
– Falling off the queue may kill your system
• Determine a Max Retry policy per queue
– Delete, put on “bad” queue, alert human, …
QCW requires “Plan for Failure”
• VM restarts will happen
– Hardware failure, O/S patching, crash (bug)
• Bake in handling of restarts into our apps
– Restarts are routine: system “just keeps working”
– Idempotent support needed important
– Event Sourcing (commonly seen with CQRS) may
help
• Not an exception case! Expect it!
• Consider N+1 Rule
What’s Up? Reliability as EMERGENT PROPERTY
Typical Site Any 1 Role Inst
Operating System
Upgrade
Application Code
Update
Scale Up, Down, or In
Hardware Failure
Software Failure (Bug)
Security Patch
Overall System
What about the DATA?
• You: Azure Web Roles and Azure Worker Roles
– Taking user input, dispatching work, doing work
– Follow a decoupled queue-in-the-middle pattern
– Stateless compute nodes
• Cloud: “Hard Part”: persistent, scalable data
– Azure Queue & Blob Services
– Three copies of each byte
– Blobs are geo-replicated
– Busy Signal Pattern
pattern 3 of 3
Database Sharding Pattern
pattern 3 of 3
Database Sharding Pattern
Most Cloud Applications don’t care
(much) about (very high) scale
But they do care about developer
productivity and operational efficiency
bar.com
foo.com
VNET in cloud, connected to on-prem
Azure
Cloud
Public
Internet
Content Editing
& Site Admin
Blob
Storage
Global CDN
Dev Team
Onprem
SOAP / REST / HTTP
Blob
Storag
e
TDS (native SQL Server
TCP-based wire protocol)
dedicated MySQL
Database to run
CMS
bar.com as Azure
Cloud Service
Site-to-Site Virtual Network
foo.com as Azure
Web Site running
CMS
Off-site/Travel
Dev Team
(Point-to-Site VPN
from laptop to
Azure)
On-prem
database
On-prem Dev Team
(Point-to-Site VPN
API
from CoLo Router
into Azure)
Azure SQL Database (WASD)
is SQL Server Except…
SQL Server
Specific
(for now)
• Full Text Search
• Transparent Data
Encryption (TDE)
• Many more…
Limitations
• You need to run it
• Max VM size
SQL Database
Specific
Common
“Just change the
connection
string…”
Limitations
• 500 GB size limit
• Busy Signal Pattern
Extra Capabilities
• Managed Service
• Highly Available
• Rental model
• Premium (reserved)
Additional information on Differences:
http://msdn.microsoft.com/en-us/library/ff394115.aspx
My database instance is
limited to 500 GB.
∞∞∞
Does that mean the
cloud doesn’t really offer
the illusion of infinite
resources?
Old-School vs. Cloud-Native
Control
Efficiency
Fixed/CapEx
Vertical Scaling
Minimize MTBF
architectural concerns
Pre-Cloud
Stable/Static
Hardwarevs. Cloud-Native
Dynamic/∞ Resources
Variable/OpEx
Horizontal Resourcing
Minimize MTTR
Data Storage = RDBMS
Scenario-specific Storage
Manage Infrastructure
Managed Infrastructure
Lessons: being Cloud-Native
1:15,000
Efficiency
Pre-Cloud
Auto-Scaling
via API vs. Cloud-Native
Dynamic/∞ Resources
Pay-As-You-Go
Variable/OpEx
Stateless, Autonomous
Horizontal Resourcing
N+1, Idempotent
Minimize MTTR
SQL, NoSQL, Blob
Scenario-specific Storage
VM, Storage, LB, DR
Managed Infrastructure
Know the rules
“Know the rules well,
so you can break them
effectively.”
- Dalai Lama XIV
Integrated Surface Area
Cloud Architecture Patterns book
Primer Chapters
1.
2.
3.
4.
Scalability
Eventual Consistency
Multitenancy and
Commodity Hardware
Network Latency
Cloud Architecture Patterns book
Pattern Chapters
1. Horizontally Scaling Compute Pattern
2. Queue-Centric Workflow Pattern
3. Auto-Scaling Pattern
4. MapReduce Pattern
5. Database Sharding Pattern
6. Busy Signal Pattern
7. Node Failure Pattern
8. Colocate Pattern
9. Valet Key Pattern
10. CDN Pattern
11. Multisite Deployment Pattern
Questions?
Comments?
More information?
Business Card
BostonAzure.org
• Boston Azure cloud user group
• Focused on Microsoft’s Public Cloud Platform
• Monthly, 6:00-8:30 PM in Boston area
– Food; wifi; free; great topics; growing community
• Follow on Twitter: @bostonazure
• More info or to join our Meetup.com group:
http://www.bostonazure.org
Contact Me
Looking for …
• consulting help with Windows Azure Platform?
• someone to bounce Azure or cloud questions off?
• a speaker for your user group or
company technology event?
Just Ask!
Find this slide
deck here
Bill Wilder
@codingoutloud
http://blog.codingoutloud.com
community inquiries: [email protected]
business inquiries: www.devpartners.com
book: www.cloudarchitecturepatterns.com