Transcript Slide 1

NASA USLI Rocket Competition

Kolton Jones, Daniel Jones, Timothy Bucklew, Owen Gaul Mariel Shumate, Keith Andrew Physics and Astronomy Western Kentucky University National Collegiate Competition to launch and return safely a rocket with a NASA payload to a height of 1 mile. 1. Engage students of all levels in science a. University b. High School c. Middle School 2. National Recruitment 3. PR for NASA and STEM

May 2012- April 2013 NASA Student Launch Teams (University/College)

1. Alabama A&M University -- Normal, Ala.

2. California Polytechnic Pomona -- Pomona, Calif.

3. Century College -- White Bear Lake, Minn.

4. Citrus College -- Glendora, Calif.

5. Clark College -- Vancouver, Wash.

6. Florida A&M University -- Tallahassee, Fla.

7. Georgia Institute of Technology -- Atlanta, Ga.

8. Harper College -- Palatine, Ill.

9. Massachusetts Institute of Technology -- Cambridge, Mass.

10. Mississippi State University -- Starkville, Miss.

11. New Mexico State University -- Las Cruces, N.M.

12. North Carolina State University -- Raleigh, N.C.

13. Northwest Indian College -- Bellingham, Wash.

14. Northwestern University -- Evanston, Ill.

15. Pennsylvania State University -- University Park, Pa.

16. Purdue University -- West Lafayette, Ind.

17. Santa Fe College -- Gainesville, Fla.

18. Tarleton State University -- Stephenville, Texas 19. University of Alabama -- Tuscaloosa, Ala.

20. University of Alabama in Huntsville -- Huntsville, Ala.

21. University of California Davis -- Davis, Calif.

22. University of Central Florida -- Orlando, Fla.

23. University of Florida -- Gainesville, Fla.

24. University of Illinois Urbana Champaign -- Champaign, Ill.

25. University of Louisville -- Louisville, Ky.

26. University of Minnesota -- Minneapolis, Minn.

27. University of Nebraska -- Lincoln, Neb.

28. University of New Hampshire -- Durham, N.H.

29. University of North Carolina Charlotte -- Charlotte, N.C.

30. University of North Dakota -- Grand Forks, N.D.

31. University of Notre Dame -- South Bend, Ind.

32. University of South Alabama -- Mobile, Ala.

33. Vanderbilt University -- Nashville, Tenn.

34. Virginia Tech -- Blacksburg, Va.

35. Western Kentucky University -- Bowling Green, Ky.

36. Windward Community College -- Kaneohe, Hawaii 1

Student Members of WKU USLI Rocket Team Vette City Rockets Name

Bucklew, Timothy 2 3 4 Carvalho Pelossi, Bruno Covetts, James Dong, Samuel 5 Dowell, Steven 6 Edens, Jordan 10 11 12 13 14 7 8 9 Gaulle, Owen Ghanta, Akhil Heintzman, Eli Jones, Daniel Jones, Kolton Leszczewicz, Jason Masuda, Shane Shumate, Mariel 15 Stansel, Jeffrey 16 Wei, Daniel 17 Wood, Duncan

Major

BS: Mechanical Engineering Physics BS: Computer Science BS: Computer Science, BS: Physics BS: Electrical Engineering BS: Mechanical Engineering BS: Physics BS: Physics BS: Physics BS: Physics BS: Physics BS: Physics BS: Physics BS: Mechanical Engineering BS: Mechanical Engineering BS: Physics, BS: Mathematics BS: Physics, BA: French

Graduating Class

2014 Brazilian Exchange Student 2013 Gatton 2013 2014 2015 2013 Gatton 2013 2015 2013 2014 2013 Gatton 2013 2014 2014 Gatton 2014 Gatton 2013

WKU Vette City Rocket Plans

1. Design, Budget, Outreach and Testing 2. Subscale Testing at WKU Rudolf Field: 6 launches, try for 1500 ft 3.

Half Scale Testing at Cemetery Field: 3 Launches, try for ½ mile: 2640 ft 4. Charge Subscale Testing at E-Field: 1 Launch 5. Full Scale Test at C-Field: 1 Launch – 1mile 6. Huntsville Launch in April: 1 Launch – 1mile 11 Month Project Current: 43.5 lbs, 7.25 ft, 8.0” diameter NASA Check in every two months Budget: Max. Rocket and Payload $5k Cost of full scale engine: $350 Motor Choice: Aerotech L1420R Students must do 100% of work Licensed Engine Mentor: Level 3 NAR D. Hanks Team Name: Vette City Rocket Mailing Address: 1906 College Heights #11077 Name of Mentor: Darryl Hanks Level 3 NAR certification NASA words of advice: please make a stable rocket.

WKU Vette City Sponsors

Computer Coding Solutions Games to Web Design Nashville Road Bowling Green, KY NASA KY Space Grant UK, EPSCoR Randolph, Hale & Meredith, Inc.

Industrial Suppliers: Medical, Mechanical, Display 319 State Street / P.O. Box 1217 Bowling Green, KY. 42101 Phone (270) 781-1462 Fax (270) 781-1524 Web Site: www.randolph electronic.com

E-Mail: sales@randolph electronic.co

m

Design and Distribution of Microchips Corporate Headquarters Microchip Technology Inc.

2355 West Chandler Blvd.

Chandler, Arizona, USA 85224-6199 (480) 792-7200 ACE Electrical Engineering Microprocessors, Boards, PCs General Motors Corvettes in BG Creating Robotic Solutions Interface, applications, controllers search •

Robotic Designs

• •

Controller Boards

• •

Software and Interface

• •

Chassis and Accessories

• •

Application Studio

• •

Customer Service Assistance:

r cp

  

r

 

d

d A

A

r cm

 

r cg

  

r

dm dm

Dynamic Stability: CP is below CG

SHM about CG due to torques acting at CP  damped harmonic motion

Drift Field Parameters

Consider a rocket in open parachute recovery mode at altitude h, with descent velocity v in the presence of a horizontal wind. The rocket will drift a distance d from the location of parachute opening. To find the drift distance we will: Scale model test launch at WKU Rudolph Field 1.

Use Newton’s Laws of motion to relate the drag force to the weight and terminal speed of the rocket 2. Estimate the drag force in terms of the drag coefficient and parachute area 3. Determine the descent velocity given the parachute area at terminal speed 4. Relate this to the total time of descent 5. Model various drift distances for a given horizontal wind speed 6. Fit parameters and estimates from flight data 7. Develop a rapid calculation rule consistent with the detailed analysis

Newton’s Second Law of Motion Descent Velocity During Recovery

Viscous Drag Force : Dynamical

F d

  (

T

)

C d

Eq.

Newton II : 

j

F j

2 

A

v

2 

F d

 

W

 

m a

Terminal Velocity  a  0 :

F d

  (

T

)

C d A

v

2 2 

mg

W

y F-drag g=9.8m/s 2 

air

1 .

5  

C d kg

1 .

229

m

3  1 .

9

A

 

A rocket

A chute

 0 .

07

m

2  0 .

28

m

2  0 .

35

m

2 W=mg x Small safe recovery v~2.5 m/s Larger rocket, higher h, v~ 5 m/s Typical Drag Forces:

12.54 N < F < 18.5 N

SkyAngle CERT 3 Drogue Tested Load Capacity (lb) Surface Area (sq.ft) Tested Cd Suspension Line Length (inches) Net Weight (oz.) 60.0-129.8

129 2.92

120 64

v

  2

mg C d A

Frictional Drag Force in a Fluid Humidity and Altitude

F d

  (

T

)

C d A

v

2 

humid

(

T

)  2   

P dry

R dry T

     

P vapor R vapor T

    

P d M d

RT P v M v

 humid :

density

of humid air kg : m 3 P d : partial pressure of dry air : Pa  N m 2

R d

J

287 .

058

kgK

: specific gas constant for dry air T : temperatur e K P v : partial pressue of water vap or : Pa R v 

J

461 .

495

kgK

specific P v  :  

P sat

:

realtive Pa humidity

gas constant for water vapor

P sat P d

  0 .

061078

P absolute

P v x

10

density

:  (

T

)  

j

T

7 .

5

T

 273 .

3  

j T j

Pa

o

: saturation   1

T

vapor pressure  0

W

 

kg

1 .

22

mg

m

3 

Vg P T P o

 

T o

 101 .

Lh

325

T o

 

P o

  1  288 .

15

Lh T o K

:  

gM RL kPa

:

sea sea

 

level level L

 0 .

0065

K

/

m

:

Lapse R

 8 .

31447

J molK

:

ideal M

 0 .

0289644

kg mol

: molar mass of air   PM RT

Terminal Velocity and Parachute Area

F

F

d

W

ma

 0 SkyAngle 60" Recon drogue chute

F

d

v A

   3  2

C

mg

5

d

2 

v m

 /

s

C

d

 0 .

75

r

2 

flat

sheet

C

d

 

C

d

Av

2 2  1 .

5  1 .

8 

mg

W d

2 4 Tested load capacity (lb) Surface Area (sq.ft) Tested CD Suspension Line length (in) Net weight (oz.)

dome

shaped

10.2 to 22.1

39.2

1.89

60 18.2

 60  " 

kg

1 .

22

D

m

3

drogue

Scale Model Parachute for Launch Brown Cemetery Lane Field Younger's Creek 583

Descent Velocity and Time

F F d

 

F d

W

C d

2 

Av

2

ma

 0 

mg

W A

  2

mg C d v

2  

r

2  

d

2 4

v

  2

mg C d A t

h

v

C d Ah

2 2

mg

Balloon Borne Sonde Wind Speed Data

ejection altitude ft descent rate mph descent rate fps descent time s flight duration s

1000 10 15 68.2

76.6

1007 12 18 57.1

65.5

1437 9 13.5

99.9

109.5

1354 10 15 84.2

92.5

908 12 18 47.8

56.1

894 9 13.5

60.8

69.6

WKU Rudolph Field Descent Data

Horizontal Drift Distance – Recovery

v

  2

mg C d A t

h

v

C d Ah

2 2

mg D drift

t v horizontal

wind

v wind

C d Ah

2 2

mg

Rock-Sim Simulation of Flight

Solid Works Code for Design and modeling prior to Construction with avionics Digilent payload Cesaroni L1395 Subscale Engine

WKU Rudolph Field

Ag Farm: 1500 ft x 3500 ft 6 Launches with Estes C/D Engines Break 1500 ft altitude

Characteristic Flight Data from Six Launches at Rudolph Field

alpha bar

Peak altitude ft Top speed mph Burn time s Peak a during boost g's average a g's coast to apogee sec apogee to ejection sec ejection altitude ft descent rate mph descent rate fps descent time s flight duration s

First Launch 1017 205 2.8

19.9

3.3

5.6

-0.1

1000 10 15 68.2

76.6

Second Launch 1038 204 2.8

15.1

3.3

5.6

-0.1

1007 12 18 57.1

65.5

Beta Prime First Launch 1457 272 2.8

14.9

4.4

6.8

-0.5

1437 9 13.5

99.9

109.5

Gamma Second Launch First Launch 1389 258 934 169 2.8

12.6

4.2

2.8

11.2

2.7

5.5

-0.5

1354 10 15 84.2

92.5

5.5

?

908 12 18 47.8

56.1

Second Launch 956 163 2.8

11.5

2.7

6 -1 894 9 13.5

60.8

69.6

1457 ft

Estes Rockets with C/D engines Defined Flight Active Zones WKU Rudolph Field Launch

3 Subscale Launches: ½ Size: 2515 ft on 1-6-2013

peak altitude ft top speed mph brun time secs peak accleration g average a g's cost to apogee secs apogee ejection time ejection altitude descent rate mph descent rate fps descent time flight time

Engine First Launch J520 SK 2450 electronics failure Second Launch J580 SS 2515 317 1.6

17.7

8.9

10.2

-2.3

2418 47 71 33.2

45 main chute failure Third Launch J 357 Blue Streak 2094 229 1.8

16.3

5.9

7 -0.1

1784 12 18 94 102.8

Scale Model Launch Brown Cemetery Lane Field Younger's Creek 583 Post Flight Scale Model Recovery System Smoothing Coupler For Ejection

In conclusion:

1. Subscale electronic ejection flight success: March 9, 2013 2. Full Scale Test Flight: launch window March 16-31- not today 3. Huntsville Flight: launch window April 19-21