Binomial Expansion

Download Report

Transcript Binomial Expansion

Want to know some BRAIN BLOWING MATHS?
1
5
10
10
5
1
The coefficients in the binomial expansion of
(1 + x) 5.
The coefficient of x 6 in the expansion of (1 + x) 49 is
49 C ,
6
That’s the number of ways of winning the jackpot on
the National Lottery.
The number of ways of winning the jackpot on
the National Lottery is 13 983 816
49
C6  13,983,816
13 983 816 two pence pieces laid end to end
would stretch 220 miles –
from London to Paris.
………………
…………………….
13 983 816 seconds is 161 days –
from 11th April until 19th September.
The Binomial Expansion
For Positive Integers
Lets start at the very beginning!
18/07/2015
Mrs Richards
www.mathsathawthorn.pbwiki.com
3
2  16
4
1. What is the value of two to the power of four ?
2. What is the cube of 2x ?
NOT
2x
(2 x)3  8x3
3
(5 y ) 2  25 y 2
3. What is the square of 5y ?
4. Simplify
3  8 x 3  25 y 2  600 x 3 y 2
3  (2 x )3  (5 y ) 2
5. What is the cube of
3
8
2

 
x3
x
2
x
6. What is any number to the power of zero ?
7. What is ( a + b ) to the power of zero ?
8. Expand and simplify
( a  b)
9. Expand and simplify
( a  b) 2
18/07/2015
1
Mrs Richards
a0  1
( a  b) 0  1
ab
That’s all we can do
4
( a  b)  ( a  b)( a  b)
2
ANOTHER WAY…..
ONE WAY…..
( a  b)( a  b)
a ( a  b )  b( a  b )
a 2  ab  ba  b 2
a  2ab  b
2
18/07/2015
a  ab  ba  b
2
a  2ab  b
2
2
Mrs Richards
2
2
5
We know that:
( a  b)  ( a  b)( a  b)
2
( a  b) 2  a 2  2ab  b 2
( a  b) 2  1a 2  2ab  1b 2
Observations?
POWERS TOTAL 2 in each TERM
KEY WORDS
We call the expansion
(a  b ) n
Binomial
as the original expression has 2 parts.
18/07/2015
Mrs Richards
6
 1 a 2  2 ab  1 b 2
18/07/2015
Mrs Richards
7
1.
2.
3.
4.
5.
18/07/2015
0
(a+b)
1
(a+b)
2
(a+b)
3
(a+b)
4
(a+b)
Mrs Richards
8
( a  b)
3
 ( a  b)( a  b) 2
 ( a  b)( a 2  2ab  b 2 )
 a (a 2  2ab  b2 )  b(a 2  2ab  b 2 )
 a 3  2a 2b  ab2  a 2b  2ab2  b3
Collecting like terms gives:
( a  b)3  a 3  3a 2b  3ab2  b3
Observations?
We again see that there is a clear pattern in the TERMS.
SYMMETRY
POWERS TOTAL 3 in each TERM
18/07/2015
1a 3  3 a 2 b  3 ab 2  1 b 3
Mrs Richards
9
1a 3  3 a 2 b  3 ab 2  1 b 3
18/07/2015
Mrs Richards
10
( a  b)
4
 ( a  b)( a  b)3
 ( a  b)(a 3  3a 2b  3ab 2  b3 )
 a (a 3  3a 2b  3ab2  b3 )  b(a 3  3a 2b  3ab2  b3 )
 a 4  3a 3b  3a 2b2  ab3  a 3b  3a 2b2  3ab3  b4
Collecting like terms gives:
( a  b) 4  a 4  4a 3b  6a 2b2  4ab3  b 4
Observations?
SYMMETRY
POWERS TOTAL 4 in each TERM
18/07/2015
1a 4  4a 3b  6a 2b2  4ab3  1b 4
Mrs Richards
11
18/07/2015
Mrs Richards
12
1.
2.
3.
4.
5.
0 =1
(a+b)
1
(a+b) =1a+1b
2
2
2
(a+b) =1a +2ab+1b
3
3
2
2
3
(a+b) =1a +3a b+3ab +1b
4
4
3
2 2
3
4
(a+b) =1a +4a b+6a b +4ab +1b
18/07/2015
Mrs Richards
13
Powers of
a+b
Pascal’s Triangle
Expression
(a  b ) 0
(a  b )
1
1
1
(a  b ) 2
1
(a  b ) 3
(a  b ) 4
1
1
1
2
3
4
1
3
6
1
4
1
The numbers of each term in
the expansion match
PASCAL’s TRIANGLE
18/07/2015
Mrs Richards
14
PREDICTION?
1, 5, 10, 10, 5, 1
( a  b)
5
 a  5a b  10a b  10a b  5ab  b
5
4
3 2
2 3
4
5
1, 6, 15, 20, 15, 6, 1
( a  b)  a 6  6a 5b  15a 4b2  20a 3b3  15a 2b 4  6ab5  b6
6
18/07/2015
Mrs Richards
15
EXPAND
( x  2)
Power of 0
Power of 1
3
Power of 2
Power of 3
Power of 4
( a  b) 
3
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1a 3  3 a 2 b  3 ab 2  1 b 3
here a is replaced with x
and b is replaced with 2
( x  2)  1x  3x (2)  3x (2)  1(2)
3
3
2
2
3
( x  2)  1x  3x (2)  3x (4)  1(8)
3
3
( x  2)  x  6 x  12 x  8
3
18/07/2015
2
3
Mrs Richards
2
16
EXPAND
( 3 x  2)
Power of 0
Power of 1
3
Power of 2
Power of 3
Power of 4
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
(3x  2)  3x  3  3x  2  3  3 x  2  2
3
3
2
2
3
(3x  2)3  3x 3  18 x 2  36 x  8
18/07/2015
Mrs Richards
17
1. WJEC January 2006 C1 PAST PAPER QUESTION
( a  b)3  a 3  3a 2b  3ab2  b3
We start with PASCAL’s
b is replaced with (2)
Here a is replaced with (3x)
The use of brackets will help avoid errors .
(3x  2)  (3x )  3(3 x ) (2)  3(3 x)(2)  (2)
3
3
2
2
3
(3x  2)  27 x  3(9 x )(2)  3(3 x )4  8
3
3
2
 27 x  54 x  36 x  8
3
18/07/2015
Mrs Richards
2
18
Power of 0
4
(3+2x)
Power of 1
Power of 2
Power of 3
Power of 4
18/07/2015
Mrs Richards
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
19
2. WJEC May 2011 C1 PAST PAPER QUESTION
( a  b) 4  a 4  4a 3b  6a 2b 2  4ab3  b 4
Here a is replaced with 3
b is replaced with (2x)
The importance of the brackets
must be stressed
(3  2 x ) 4  34  4(3)3 (2 x )  6(3) 2 (2 x) 2  4(3)(2 x) 3  (2 x) 4
(3  2 x ) 4  81  216 x  216 x 2  96 x 3  16 x 4
18/07/2015
Mrs Richards
20
3. WJEC Jan 2010 C1 PAST PAPER QUESTION Jan 2010
We KNOW n=5 and so we can use PASCALS TRIANGLE if we wish.
(a  b)5  a5  5a 4b  10a3b2  10a 2b3  5ab4  b5
( a  3x )5  a 5  5a 4 (3x )  10a 3 (3x ) 2  10a 2 (3 x ) 3  5a (3 x ) 4  (3 x ) 5
TERM in x
TERM in x squared
15a 4 x
COEFFICIENT of the TERM in x
90a 3 x 2
15a 4
COEFFICIENT of the TERM in x squared
18/07/2015
90a 3
Mrs Richards
21
15a 4 x  90a 3 x 2
Solve this equation…..
90a  8  15a
3
90a
a
3
8  15a
3
a
4
3
4
This is a taste of future stories!
18/07/2015
Mrs Richards
22
3. WJEC January 2012 C1
Introducing Fractions
(a  b)4  a4  4a3b  6a 2b2  4ab3  b4
 3
b is replaced with  
x
Here a is replaced with x

x

4
2
3
3
 3  3
4
3 3
2 3
  x  4x    6x    4x     
x
 x
 x
 x  x
4
2
3
2
3
12
x
6
x
 9 4 x  27 81


4


 4
2
x   x 
2
3
x
x
x
x
x

4

x

18/07/2015
4
3
108 81
4
2
  x  12 x  54  2  4
x
x
x
Mrs Richards
23
4. WJEC May 2009 C1
4
2
32 16

4
2
 x    x  8 x  24  2  4
x
x
x

18/07/2015
Mrs Richards
24
5. WJEC JANUARY 2009 C1
( a  b)5  a 5  5a 4b  10a 3b 2  10a 2b3  5ab 4  b5
Here a is replaced with 1/4
b is replaced with (2x)
BUT!
We are not interested in all terms. We must think carefully, which TERM will involve x cubed?
This is the TERM that will involve x cubed
18/07/2015
Mrs Richards
25
5. WJEC JANUARY 2009 C1
( a  b)5  a 5  5a 4b  10a 3b 2  10a 2b3  5ab 4  b5
Here a is replaced with 1/4
b is replaced with (2x)
2
BUT!
The TERM containing x cubed is: 10  1   2 x 3
 think carefully, which TERM will involve x cubed?
We are not interested in all terms. We must
4
 10 
3
Which simplifies to:    8 x
 16 involve x cubed
This is the TERM that will
 10 
3

8
x
2 
 16 
5x 3
So the COEFFICIENT of x cubed is
18/07/2015
5
Mrs Richards
26
WJEC May 2012 C1 PAST PAPER QUESTION
First consider the expansion of
( a  b) 6
Using PASCAL’S TRIANGLE
 a  6a b  15a b  20a b  15a b  6ab  b
6
5
Here a is replaced with 1
4 2
3 3
2 4
5
6
b is replaced with (-2x)
(1  2 x )  1  6( 2 x )  15( 2 x )  20( 2 x )  ..
6
2
3
(1  2 x )6  1  12 x  60 x 2  160 x 3  ..
18/07/2015
Mrs Richards
27
WJEC May 2007 C1 PAST PAPER QUESTION
(a  b)5  a5  5a 4b  10a3b2  10a 2b3  5ab4  b5
2
3
4
1 5
1 1
5
41
31
21
( x  )  x  5 x    10 x    10 x    5 x     
x
x
 x
 x
 x  x
18/07/2015
Mrs Richards
5
28
WJEC January 2013 C1
 a6  6a5b  15a 4b2  20a3b3  15a 2b4  6ab5  b6
18/07/2015
Mrs Richards
29
WJEC January 2005 C1
(a  b)4  a 4  4a3b  6a2b2  4ab3  b4
( a  2 x ) 4  a 4  4a 3 (2 x )  6a 2 (2 x ) 2  4a (2 x )3  (2 x ) 4
18/07/2015
Mrs Richards
30
WJEC January 2007 C1
(a  b)4  a4  4a3b  6a 2b2  4ab3  b4
(2  x ) 4  24  4(2)3 x  6(2) 2 x 2  4(2) x 3  x 4
(2  x ) 4  16  32 x  24 x 2  8 x 3  x 4
But we are told this equals… (given in question) So solve the equation
18/07/2015
Mrs Richards
31
MAY 2010
18/07/2015
Mrs Richards
32
WJEC January 2011 C1
18/07/2015
Mrs Richards
33
18/07/2015
Mrs Richards
34
The Story Continues…..
5 Factorial
5!  5  4  3  2  1
n Factorial
n !  n  (n  1)  (n  2)  ......  2  1
18/07/2015
Mrs Richards
35
PASCAL DEFINED THE NUMBER OF WAYS OF
SELECTING r OBJECTS FROM
n OBJECTS AS:
Sometimes written as
18/07/2015
Mrs Richards
36
June 2009 part b
(1  x )n  1  nx 
n ( n  1) 2
x
2!
n ( n  1)
2!
18/07/2015
n(n  1) 2 n(n  1)(n  2) 3 n(n  1)(n  2)(n  3) 4
x 
x 
x  .......  x n
2!
3!
4!
Is the TERM in x squared
Is the COEFFICIENT of x squared
n(n  1)
 55
2!
SOLVE this
Mrs Richards
37
n(n  1)
4  2  2n
2!
Coefficient of x squared is twice the coefficient of x
n2  n
2  4n
1
n 2  n  2n
n 2  3n  0
n( n  3)  0
18/07/2015
Mrs Richards
So n=3
38
JUNE 2007 part b
(1  x )n  1  nx 
18/07/2015
n(n  1) 2 n(n  1)(n  2) 3 n(n  1)(n  2)(n  3) 4
x 
x 
x  .......  x n
2!
3!
4!
Mrs Richards
39
JAN 2012 part b
(1  x )n  1  nx 
18/07/2015
n(n  1) 2 n(n  1)(n  2) 3 n(n  1)(n  2)(n  3) 4
x 
x 
x  .......  x n
2!
3!
4!
Mrs Richards
40
18/07/2015
Mrs Richards
41