Transcript Document
Nutrient Export Coefficient Modeling in Mediterranean Coastal Streams Timothy H. Robinson, Al Leydecker, Arturo A. Keller and John M. Melack Bren School of Environmental Science & Management University of California, Santa Barbara, USA Santa Barbara Coastal LTER - NSF UC Marine Council Study Area Watershed Characteristics SF LA Watersheds Drainage Area Max-Elevation Ave-Slope 2 Carpinteria Franklin Santa Monica (km ) 39.2 11.6 9.8 (m) 1424 533 1192 (ft) 4672 1749 3911 (%) 38 20 45 Urban Agriculture Chaparral/Forest (%) 2 29 3 (%) 11 30 3 (%) 85 40 93 Specifics: Analyzing for: Ammonium (NH4+), Nitrate (NO3-), Total Dissolve Nitrogen (TDN), Phosphate (PO43-), Total Particulate Carbon (TPC), Total Particulate Nitrogen (TPN), Total Particulate Phosphate (TPP), Total Suspended Sediments (TSS) and major ions at selected locations Frequency: • Regular sampling: Once every 2 weeks during the dry season Once a week during the wet season • Storm sampling: Every hour on the rising limb of the hydrograph Every 2-4 hours on the falling limb of the hydrograph Project duration: WY2001, WY2002 and WY2003 Annual Basin Nutrient Export Water Year 2001 and 2002 10 2001 2002 20 15 10 5 Nitrate Export (kg-N ha-1yr-1) Annual Discharge (cm yr -1) 25 0 Franklin Carpinteria 8 6 4 2 0 Santa Monica Franklin 8 Carpinteria Santa Monica 1.5 2001 2002 6 4 2 Phosphate Export (kg-P ha -1yr-1) PON Export (kg-N ha-1yr-1) 2001 2002 2001 2002 1.0 0.5 0.0 0 Franklin Carpinteria Santa Monica Franklin Carpinteria Santa Monica Nutrient Export Coefficient Model (NEC-M) L Ei A I K D i L A E GIS I i i I K Datm Interview Literature Literature E b (LU ) LU GIS atm Literature K keat b k t a d/v S+P Abbreviation key: • L – Nutrient Export (loss) (mass area-1 time-1) • E – Export Coefficient Function • b – Watershed Response Variable • LU – Land use • S – Soils LTER Datm • • • • • P – Precipitation A – Land Use Area I – Nutrient input rate K – Down Stream Distance-Decay Function k and a – Coefficients • t – Time • d – Distance Traveled Downstream • v – Average Velocity Traveled Downstream • Datm – Atmospheric deposition Spatial Extent of Land Use Class (A) WY2001 WY2002 WY2003 Land Use: •Chaparral/Forest •Avocado •Greenhouse •Nursery •Residential •Commercial # 1 1 1 2 3 4 5 6 6 Land Use Area % Target % Secondary % Impervious Class (hectares) Land Use Land Use Surface Chaparral/Forest 1873 100 0 0 Chaparral/Forest 1210 100 0 0 Chaparral/Forest 902 100 0 0 Avocado 747 36 42 (Chap/For) 7 Greenhouse 17 97 3 (Chap/For) 68 Nursery 80 47 21 (Avo) / 12 (Chap/For) 11 Residential 6 100 0 30 Commercial 32 91 9 (Chap/For) 77 Nutrient Export WY2002 1.4 0.40 Chaparral/Forest 0.35 0.30 0.25 NH4 0.8 NO3 0.20 PO4 0.6 flow 0.4 0.15 0.10 0.2 0.05 0.0 0.00 9/16 12/25 4/4 7/13 10/21 3 -1 1.0 Flow (m s ) Cumulative Export (kmols) 1.2 Hourly time-step Hydrology: • Pressure Transducer • Observed stage • HEC-RAS Stream Chemistry Modeling Nutrient Export Coefficient (E) 2500 50 baseflow baseflow 1500 1000 500 E LUb stormflow 30 20 10 0 0 Franklin b Carpinteria Santa Monica Franklin 10000 WY 2001 Santa Monica 8 7 flow 1000 6 TDN 5 NO3 (kmol) E – Export Coefficient Function b – Watershed Response Variable S – Soils P – Precipitation Carpinteria Franklin Creek S+P cumulative export LU GIS 40 100 4 3 PO4 10 2 NH 4 1 1 5-Jan 0 15-Jan 25-Jan 4-Feb 14-Feb 24-Feb 6-Mar discharge (m3 s-1) E stormflow phosphate (SRP, µM) nitrate (µM) 2000 Scaling the Export Coefficient (b) • Storm to Storm relationships. • Volume Weighted Mean Concentrations vs. Cumulative Rainfall. • Volume Weighted Mean Concentrations vs. Rainfall/Runoff Ratio. • Topographic Index (TI): variable source area. • Antecedent Soil Moisture Content: SSURGO soils data, texture->porosity, infiltration rates, evapotranspiration rates, depth to impervious layer, etc. Nutrient Flux (normalized by runoff) 10000 -1 -1 NO3 Export (g ha mm ) NO3-Commercial 1000 WY2002 NO3-Residential NO3-Greenhouse NO3-Chaparral/Forest 100 10 1 0.1 0.01 10/30 11/12 11/24 11/29 12/2 12/14 12/20 12/30 1/27 2/17 3/7 5/20 VWM vs. Runoff/Rainfall 1500 VWM Concentration (µM) Greenhouse y = 227.45Ln(x) + 1046.6 R 2 = 0.52 1000 NO3 PO4 500 y = -91.22Ln(x) + 114.48 R 2 = 0.71 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Runoff/Rainfall Ratio 0.7 0.8 0.9 1.0 Conclusions • High frequency storm sampling is critical. • Nutrient Export Coefficients in Mediterranean climates must be a function that is related to the watershed runoff response and not a single annual term. • Analysis of the final year of data will solidify scaling techniques in NEC-M. • Future work: implement the model in the study watersheds and test its portability in a catchment outside of the area (e.g. Spain). Questions Thank you ! Nutrient Watershed Flux 12,000 Nutrient Loading (kg/yr) NH4-N 10,000 NO3-N DON-N 8,000 PO4-P 6,000 4,000 2,000 0 Santa Monica Franklin Carpinteria Climatic Regime 250 Downtown Santa Barbara, 30 m San Marcos Pass, 671 m 150 100 50 0 1965 25 1970 1975 1980 1985 1990 Downtown Santa Barbara, 30 m San Marcos Pass, 671 m 20 15 10 5 l ug A Ju Ju n M ay pr A M ar Fe b n Ja ec 0 D 1960 Se pt O ct N ov 1955 Avg Monthly Precipitation, cm Annual Rainfall, cm 200 1995 2000 Sampling Site Locations Land Use: •Chaparral/Forest •Avocado •Greenhouse •Nursery •Residential •Commercial WY2001 WY2002 WY2003 Linkage – Stream Network & Chemistry Arc Hydro Geodatabase: geometric network representation of the connectivity of surface water • HydroNetwork DEM analysis • HydroEdge • HydroJunctions • SchematicLinks+Nodes • HydroPointEvent • HydroLineEvent Drainage Network + Sampling Points Visual Basic for Application: MS Excel/Access: Location Carpinteria @ Calle Ocho Carpinteria @ Vedder's Carpinteria @ 6 St. manhole Carpinteria @ Casitas Village drain Franklin @ Carpinteria Ave Franklin @ Meadow View ramp Franklin @ Meadow View drain Franklin @ Girls Club on Foothill ID CP00 CP05 CP20 CP30 FK00 FK03 FK04 FK06 LTER # 30001 30002 30003 30004 30005 30006 30007 30008 date 3-Oct-02 3-Oct-02 3-Oct-02 3-Oct-02 3-Oct-02 3-Oct-02 3-Oct-02 3-Oct-02 time 18:50 12:20 19:10 18:40 20:05 19:50 19:55 19:40 NH4 uM 2.8 0.5 1.7 114.0 5.2 0.7 5.3 1.0 NO3 uM 257.8 26.3 139.3 0.7 1712.9 2227.2 666.7 2180.7 PO4 uM 1.9 3.4 3.6 187.5 6.0 2.9 125.5 1.1 Measuring Stream Flow Staff Gauges and Pressure Transducers Surveying the Cross-Sections Developing Rating Curves Nutrient Loading Development of a Nutrient Flux Model Stream Chemistry Stream Chemistry PT Stage (5-min) Observed Stage Observed Flow Stream Chemistry (hourly) Identify: Baseflow, Peakflow.. Nut. Conc. Stage-Discharge Relationship (HEC-RAS) Observed Flow (hourly) Flow (hourly) Stream Chemistry (model/obs) Flow (hourly) PT Flow (5-min) Flow (hourly) Linear extrapolation Nut. Flux (conc/flow) Annual Nutrient Loading Precipitation WY2002 Cumulative Storm Storm Rainfall Rainfall Duration (date) (mm) (hours) 10/30 10.2 7 11/12 45.7* 38 11/24 40.6 4 11/29 10.2 10 12/2 7.6 5 12/14 5.1 3 12/20 10.2 6 12/30 22.9* 34 1/27 12.7 5 2/17 10.2 15 3/7 5.1 6 5/20 5.1 2 * Two short pulses during the time period. Nutrient Flux (normalized by runoff) PO4-Commercial WY2002 -1 PO4 Export (g ha mm ) 1000 PO4-Residential PO4-Greenhouse 100 -1 PO4-Chaparral/Forest 10 1 0.1 10/30 11/12 11/24 11/29 12/2 12/14 12/20 12/30 1/27 2/17 3/7 5/20 Attenuation (K) • • • • K Literature at K ke k t D/V a Distance from stream Distance from basin outlet Type of riparian corridor Dispersal Area and Trapping Likelihood (BI Index) VWM vs. Cumulative Rainfall VWM - Volume Weighted Mean 1500 VWM Concentration (µM) Greenhouse NO3 PO4 Trendline for NO3 y = 3.9245x + 463.75 1000 2 R = 0.42 500 0 0 20 40 60 80 100 120 140 Cumulative Rainfall (mm) 160 180 200 VWM vs. Cumulative Rainfall VWM - Volume Weighted Mean 100 1500 NO3 PO4 80 VWM Concentration (µM) VWM Concentration (µM) Residential 2 R = 0.38 60 40 20 0 1000 500 0 0 20 40 60 80 100 120 140 Cumulative Rainfall (mm) 160 180 200 VWM vs. Runoff/Rainfall 15 VWM Concentration (µM) Chaparral/Forest NO3 PO4 10 y = 0.1293x -0.7348 R 2 = 0.5155 5 0 0.00 0.01 0.02 0.03 0.04 0.05 Runoff/Rainfall Ratio 0.06 0.07 0.08