Transcript Document
2.0 Bending of Beams ☻2.1 ☻2.2 Revision – Bending Moments Stresses in Beams sx sx P x ☻2.3 Mxz Mxz Combined Bending and Axial Loading P1 ☻2.4 P2 Deflections in Beams 2.5 Buckling (Refer: B,C & A –Sec’s 10.1, 10.2) MECHENG242 Mechanics of Materials Bending of Beams 2.5 Bars Under Axial Compression - Buckling (Refer: B, C & A–Sec 10.1, 10.2) Euler, Leonard (1741) For bars or columns under compressive loading, we may witness a sudden failure, known as buckling. This is a form of instability. P P Consider load, P, plotted against horizontal displacement, v. Point of Bifurcation P Short, Thick Long, Slender MECHENG242 Mechanics of Materials v Bending of Beams Consider a long slender bar under axial compression: y v P y P L x z d b P x P Mxz=-P.v From the Engineering Beam Theory: d2 v EI z 2 Mxz P v dx d2 v EI z 2 P v 0 dx Let P EI z 2 MECHENG242 Mechanics of Materials d2 v 2 v0 2 dx Euler Equation Bending of Beams General Solution: v A Sinx B Cosx d2 v 2 v0 2 dx Boundary Conditions: From (i): (i) @ x=0 v0 (ii) @ x=L v0 (Also, (iii) @x=L/2, dv 0) dx 0 A Sin 0 B Cos 0 B0 v A Sinx From (ii): 0 A SinL • If A=0, v=0 for all values of x (i.e. The bar remains straight – NO BUCKLING) • If Sin L=0, then (possible buckling solutions) L 0, , 2 , 3 , ... MECHENG242 Mechanics of Materials Bending of Beams The Lowest Real Value: Since L 2 P 2 EI z PC 2 L EI z Where PC is the Critical or Euler Buckling Load. For buckling (i.e. at point of bifurcation): P PC L 2 2EI z L2 (Iz is the smallest 2nd Moment of Area) P v L P MECHENG242 Mechanics of Materials Points of Bifurcation 4 2EI z PC L2 PC 2EI z L2 v Bending of Beams Let PC sC A sC Let Kz2 (Radius of Gyration) AL2 L Iz , and S (Slenderness Ratio) Kz A 2 L S2 2 Kz sC sC 2 E S2 Unstable sYield Short, Thick 2 EI z Empirical Euler Stress Material Yielded Long, Slender 0 MECHENG242 Mechanics of Materials Stable S Bending of Beams Free or Pinned Ends End Constraints: PC P P 2 EI z L2 L Fixed Ends L/2 P P L 4 2 EI z PC L2 One End Free & One End Fixed 2L P P L P L MECHENG242 Mechanics of Materials 4L2 One End Pinned & One End Fixed 2L P PC 2 EI z 22 EI z PC L2 Bending of Beams Example: Find the shortest length L of a Pin-Ended strut, having a cross-section of 60mm x 100mm for which the Euler Equation applies. Assume E=200 Gpa and sYield=250 MPa sC Euler Eqn., Iz Min. value, sC i.e. Iz L sYd 3 10060 12 AL2 1.8 106 m m4 2 200 109 1.8 10 6 250 10 0.1 0.06 6 Euler Theory =250 MPa 2 EI z Iz L 2 & Kz Note: S A Kz S 0 90 MECHENG242 Mechanics of Materials 1.54 m S 1.54 1.8 10 0.1 0.06 6 90 Bending of Beams