Transcript Lesson 6-2
Lesson 2-6 Limits at Infinity and Horizontal Asymptotes Objectives • Identify and use limits of functions as x approaches either +/- ∞ • Identify horizontal asymptotes of functions Vocabulary • Horizontal Asymptote – a line y = L is a horizontal asymptote, if either limx→∞ f(x) = L or limx→-∞ f(x) = L • Infinity – ∞ (not a number!! ∞ - ∞ ≠ 0) Horizontal Asymptotes: Limits at Infinity 16x4 + x² g(x) = ------------4x4 + 7 10x² + 9 f(x) = ------------5x² + 1 y=4 y=2 x4 (16 + 1/x²) 16 lim g(x) = lim -------------------- = lim ----- = 4 x→-∞ 4 x→-∞ x→-∞ x4 (4 + 7/x4) x² (10 + 9/x²) 10 lim f(x) = lim -------------------- = lim ----- = 2 x→∞ 5 x→∞ x→∞ x² (5 + 1/x²) 11x4 + x² h(x) = ------------3x2 + 7 x2 (11x2 + 1) 11x² lim h(x) = lim -------------------- = lim ------- = ∞ x→∞ x→∞ x→∞ x2 (3 + 7/x2) 3 lim (x² - 5x) = lim x² - 5 lim x = ∞ not ∞ - ∞ !! x→∞ x→∞ x→∞ Remember infinity is not a number! Rational Functions When given a ratio of two polynomials, the limit of the function as x approaches infinity will be determined by the ratio of highest powers (HP) of x in numerator and the denominator: 1) HPs equal: then the limit is the ratio of the constants in front of the HP x-terms (and its horizontal asymptote) 7x³ - 3x² - 2x + 1 example: lim -------------------------x 4x³ - 13x² + 7 = 7 ---4 2) HP in numerator > HP in denominator: then the limit is DNE (and no horizontal asymptotes exist) 5x³ + 7x² - 3x + 4 example: lim -------------------------x 3x² - 8x + 5 = DNE 3) HP in numerator < HP in denominator: then the limit is 0 (and the horizontal asymptote is y = 0) -6x² - 8x - 7 example: lim ---------------------x 2x³ + 7 = 0 Horizontal Asymptotes A horizontal asymptote for a function f is a line y = L such that , either lim f(x) = L , or lim f(x) = L , or both. x x- A function may have at most 2 horizontal asymptotes. 5x 3 7 x 1 x 3 x 3 2 x 2 3 lim Example 1 Evaluate: a. lim x 5x³ + 7x + 1 ----------------------3x³ + 2x² + 3 b. 2x + 5 lim --------------x x² + 4 = c. cos x lim --------------x x = d. lim x x³ + 6x + 1 --------------------2x² - 5x = = Example 2 Find the horizontal asymptote(s) for x² - 2x + 1 a. y = ------------------3x³ + 4x + 7 3x7 – 4x5 + 3x - 1 b. y = -------------------------2x7 + 4 x c. y = ---------------x² - 1 Checking for Understanding Summary & Homework • Summary: – Limits at infinity involved the highest powers in the function – Horizontal asymptotes (y = L) are the limits that exist (as x approaches infinity) • Homework: pg 146 - 149: 2, 3, 7, 11, 13, 18, 27, 29, 33, 38, 39