A new possibility for the metal
Download
Report
Transcript A new possibility for the metal
A new
scenario
for the metalCritical
behavior
near a two dimensional
Mott insulator
Mott insulator transition in 2D
Why 2D is so special ?
S. Sorella
Coll. F. Becca, M. Capello, S. Yunoki
Sherbrook 8 July 2005
1
The still unexplained phase diagram
A huge non-Fermi liquid region close to a Mott insulator
?
2
The variational Jastrow-Slater
Min G
T hetask:
correlation
G H G
G G
mean field
G exp( v q nq nq ) Fermigas
q
nq 1 / L e nR
iqR
R
vq g
Gutzwiller wavefunction
3
The Gaskell-RPA solution
2 v q 1 / N (1 / N ) 2U q /( q / 2m)
0
q
0 2
q
2 2
N FermiGas nqnq FermiGas | q |
0
q
Within the same RPA the structure factor is:
Nq N /(1 2vq N ) | q |
0
q
0
q
4
In a lattice model with short range interaction?
Uq U
T he Hubbard U
h q / 2m 2t (cos(q) 1)
2 2
(?)
And the f-sum rule?
q | Kin Energy| (1 cos(q)) / Nq
Thus no way to get an insulator with Jastrow-Slater?
See e.g. Millis-Coppersmith PRB 43, (1991).
The 1d numerical solution U/t=4 L=82
Insulator v q ~ 1 / q
Metal
vq ~ 1 / q
2
M. Capello et al. PRL 2005
J exp( v qnqnq )
q
5
A long range Jastrow correlation can
drive a metallic Fermi sea to a Mott insulator!!
vq g
vq ~ 1/ q2
vq g
vq ~ 1/ q2
For an insulator :
No charge stiffness
Incompressible fluid
6
What in higher dimension?
Brinkmann-Rice:
Z ( Jump of nk ) 0 ~ (U c U )
*
-1
at Uc :
m ~ (U c U )
-1
~
(
U
U
)
s
c
7
Infinite dimension (DMFT)
U /D 1
U /D 2
U / D 2.5
U /D 3
U /D 4
The insulator is more realistic
n n 0
8
Now we can do the same in 2D
(obviously we neglect AF as in DMFT or in BR)
Jastrow factor q-space
25
98
20
2
q vq
15
10
162 242 #Sites/U
7
8
8.5
9
10
KT
5
0
0.0
0.5
1.0
q // (1,1)
KT means Kosterlitz-Thouless transition point, explained later…
9
A clear transition is found
1.00
Zk
F
<D>
0.2
0.1
0.75
0.0
5
0.50
10
15
20
U/t
Z (U c U )
0.25
0.00
# Sites
98
162
242
98
162
242
1
4
8
12
16
20
24
Uc / t U/t
8.75 0.25
10
Feynmann never lies (assumed)
Excitation energy q induced by nq 0
where 0 is the exact ground state of a physical Hamiltonian
q const.(2 cos(qx ) cos(q y )) / N q
q Hubbard gap (~ U) in theinsulator
The reason is simple
for q 0 nq e nR N (# particles)
iqR
R
T hus
H , n 0 and n
q
q
0
Exact eigenstate
11
Now let us start from the insulator
Doblon
holon Singly occupied
q 1
q 1
q0 q0
T ake ( x ) exp(V ( x) / T )
x
2
0
eff
holonand doblon positions
12
Mapping to a classical model
Quantum
0 nqnq 0
Nq
0 0
Classical
exp(V ( x ) / T ) n ( x )n
exp(V ( x ) / T )
eff
q
q
( x)
x
eff
x
Notice:
nq ( x) 1 / L
q e
iqxi
i
Position charges
For large U/t we are in the very dilute regime
13
Nq q
Now ask how can we satisfy
2
No way out, for any insulator U>>t (any D):
V ( x ) v q nq ( x ) n q ( x )
q
vq 1 / q
2
In 2D a singular v between holon and doblon
14
Exact mapping to the 2D CG model
( x ) exp(V ( x ) / T )
2
0
eff
V ( x ) qi q j log(| ri rj |) Less singular
i j
We can classify all 2D insulators in terms of
and what for T
eff
T
eff
TKosterlitz-Thouless ?
true 2D Mott Insulator
(no broken translation symmetry)
15
A KT transition is found
0.5
2D Fermi-Coulomb gas
Confined phase
1/
1.0
578
1250
2450
Plasma phase
0.0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
eff
T
1 2 /(q T ) Nq
1
2
eff
16
In the “plasma phase” , similar to Luttinger liquid:
Fermi surface but no Fermi jump
1.0
98
162
242
338
1250
T eff 0.75
k
0.6
0.4
Jump n
nk
0.8
0.2
0.5
nk (k k F )
0.14
0.4
100
0.0
0.0
1000
# Sites
0.2
0.4
0.6
0.8
1.0
q //(1,1)
Similar conclusions in Wen & Bares PRB (1993)
17
Instead in the confined phase T
T eff 0.25
k
Jump n
0.4
TKT
50
98
162
242
338
nk
0.6
eff
0.01
0.001
100 200 300
# Sites
0.0
0.2
0.4
0.6
0.8
1.0
k //(1,1)
The density matrix appears to decay exponentially
i.e. the momentum distribution is analytic in k
18
Anomalous exponents for Z in 2D
t-J (projected wf)
BCS ~ 1 / 2
FG ~ 3 / 4
Prediction HTc:
Z ~ doping
Hubbard
1/ T
eff
(non trivialexponent)
19
From 2D Coulomb gas (see P. Minnhagen RPM ’87) :
The charge correlation decays as power law > 4 T eff TKT
2
N ( q) A | q | B | q |
2
n0nR R
A>0
2
because
... i.e :
( 4 )
there is a gap at q0 according to Feynmann
correlations are decaying as power laws
A gap with power laws !!!
20
n.b. This implies that any band insulator plasma phase T eff TKT
Holon-Doblon
N(qmin)/qmin
2
0.003
10
-3
10
-4
10
-5
10
-6
10
-7
10
-8
1250
338
1
Distance
0.002
0.00
0.02
0.04
0.06
1/#Sites
21
It looks consistent, though it is impossible to prove numerically
No Friedel oscillations (Mott insulator)
Clearly quadratic
22
New scenario T=0 D=2
(compatible with VMC on Hubbard)
The Hubbard gap:
q0 K q2 / N (q) 0
Consistent with DMFT D
U /t
Fermi liquid
Non Fermi liquid MotteffInsulator
T TKT
critical point
23
Even more new scenario T=0 D=2
(long range interactions?)
A charge gap opens up continuously
U /t
T eff TKT
T eff TKT
Fermi liquid Non Fermi liquid Mott Insulator
(or d-wave BCS) incompressible
(with preformed pairs)
24
In the plasma phase for T eff 0.4 we have:
1) Z0 Non Fermi liquid, singular at kF ~ ( / 2, / 2)
2) No d-wave ODLRO (preformed pairs at T=0)
pseudogap T=0 phase ( BCS ~ (pseudogap) 0 )
T
eff
25
Conclusions
• A Mott transition is found in 2D Hubbard (VMC)
• Mapping to 2D Coulomb gas
confined phase= Mott insulator
plasma phase=Non Fermi liquid metal
• Critical Z0 in the insulating/metallic phase
• Power law correlations in the insulator with gap
Non Fermi liquid phase possible in 2D?
26
Finite doping ?
1
D-wave SC
Non Fermi liquid Mott Insulator
with preformed pairs