Transcript Chapter 4
Chapter 4
Laplace Transforms
Overall Course Objectives
• Develop the skills necessary to function as an
industrial process control engineer.
– Skills
•
•
•
•
Tuning loops
Control loop design
Control loop troubleshooting
Command of the terminology
– Fundamental understanding
• Process dynamics
• Feedback control
Laplace Transforms
• Provide valuable insight into process
dynamics and the dynamics of feedback
systems.
• Provide a major portion of the terminology
of the process control profession.
Laplace Transforms
L f (t ) f (t ) e dt F ( s)
st
0
• Useful for solving linear differential equations.
• Approach is to apply Laplace transform to
differential equation. Then algebraically solve for
Y(s). Finally, apply inverse Laplace transform to
directly determine y(t).
• Tables of Laplace transforms are available.
Method for Solving Linear
ODE’s using Laplace Transforms
sY(s) - y(0) =
F(s,Y)
Y(s) = H(s)
Lapl ace Domain
Ti m e Dom ai n
dy/dt = f(t,y)
y(t) = h(t)
Some Commonly Used Laplace
Transforms
f (t ) F ( s ) e s
Unit Step 1 / s
t
n
n!
n 1
s
e at
1
sa
sin( t ) 2
s 2
d f (t )
s F ( s ) f (0)
dt
d 2 f (t )
2
s
F ( s ) s f (0) f (0)
2
dt
e
at
sin( t )
( s a) 2 2
Final Value Theorem
limt f (t ) lims0 s F (s)
• Allows one to use the
Laplace transform of a
function to determine
the steady-state resting
value of the function.
• A good consistency
check.
Initial-Value Theorem
limt 0 f (t ) lims s F (s)
• Allows one to use the
Laplace transform of a
function to determine
the initial conditions
of the function.
• A good consistency
check
Apply Initial- and Final-Value
Theorems to this Example
2
Y ( s)
s ( s 2) ( s 4)
2 (0)
1
limt f (t )
(0) (0 2) (0 4) 4
limt 0 f (t )
2 ( )
0
() ( 2) ( 4)
• Laplace
transform of the
function.
• Apply final-value
theorem
• Apply initialvalue theorem
Partial Fraction Expansions
s 1
A
B
(s 2) ( s 3) s 2 s 3
s 1
( s 2) ( s 3)
A B 1
• Expand into a term for
each factor in the
denominator.
A( s 3) Bs 2
• Recombine RHS
( s 2) ( s 3)
3 A 2B 1
s 1
1
2
( s 2) ( s 3) s 2 s 3
• Equate terms in s and
constant terms. Solve.
• Each term is in a form so
that inverse Laplace
transforms can be applied.
Heaviside Method
Individual Poles
N ( s)
N ( s)
Y (s)
D( s ) ( s a1 )( s a2 ) ( s an )
Cn
C2
C1
s an
s a1 s a2
N (s)
Equation 4.4.2 : Ci
D( s) /( s ai ) s a
i
Heaviside Method
Individual Poles
s3
C1
C2
Y ( s)
( s 1)( s 2) s 1 s 2
N ( s)
Equation 4.4.2 : Ci
D( s) /( s ai ) s a
i
s3
s3
C1
2; C2
1
s 2 s 1
s 1 s 2
s3
2
1
Y ( s)
( s 1)( s 2) s 1 s 2
Heaviside Method
Repeated Poles
N ( s)
N ( s)
Y (s)
n
D( s ) ( s a)
Cn
C1
C2
2
s a (s a)
(s a)n
1 d i ( s a)n N ( s)
Equation 4.4.2 : Ci
i
i ds
D( s )
s ai
Heaviside Method
Example with Repeated Poles
C3
N (s)
s3
C1
C2
Y (s)
2
2
D( s ) ( s 1) ( s 2) s 1 ( s 1) s 2
s3
C2
2;
s 2 s 1
s3
C3
2
( s 1)
1
s 2
n
1 d ( s a) N (s)
Equation 4.5.3 : Ci
i ds i
D( s )
s ai
i
1
1 d s 3
s3
C1
1
2
1 ds s 2 s 1 s 2 ( s 2) s 1
s3
1
2
1
Y (s)
2
2
( s 1) ( s 2) s 1 ( s 1) s 2
Example of Solution of an ODE
d2y
dy
6
8 y 2 y(0) y' (0) 0 •
2
dt
dt
s 2 Y (s) 6s Y (s) 8Y (s) 2 / s
2
Y ( s)
s ( s 2) ( s 4)
1
1
1
Y ( s)
4s 2 ( s 2) 4 ( s 4)
1 e 2t
e 4t
y (t )
4
2
4
ODE w/initial conditions
• Apply Laplace transform
to each term
• Solve for Y(s)
• Apply partial fraction
expansions w/Heaviside
• Apply inverse Laplace
transform to each term
Overview
• Laplace transforms are an effective way to
solve linear ODEs.