Transcript Chapter 4
Chapter 4 Laplace Transforms Overall Course Objectives • Develop the skills necessary to function as an industrial process control engineer. – Skills • • • • Tuning loops Control loop design Control loop troubleshooting Command of the terminology – Fundamental understanding • Process dynamics • Feedback control Laplace Transforms • Provide valuable insight into process dynamics and the dynamics of feedback systems. • Provide a major portion of the terminology of the process control profession. Laplace Transforms L f (t ) f (t ) e dt F ( s) st 0 • Useful for solving linear differential equations. • Approach is to apply Laplace transform to differential equation. Then algebraically solve for Y(s). Finally, apply inverse Laplace transform to directly determine y(t). • Tables of Laplace transforms are available. Method for Solving Linear ODE’s using Laplace Transforms sY(s) - y(0) = F(s,Y) Y(s) = H(s) Lapl ace Domain Ti m e Dom ai n dy/dt = f(t,y) y(t) = h(t) Some Commonly Used Laplace Transforms f (t ) F ( s ) e s Unit Step 1 / s t n n! n 1 s e at 1 sa sin( t ) 2 s 2 d f (t ) s F ( s ) f (0) dt d 2 f (t ) 2 s F ( s ) s f (0) f (0) 2 dt e at sin( t ) ( s a) 2 2 Final Value Theorem limt f (t ) lims0 s F (s) • Allows one to use the Laplace transform of a function to determine the steady-state resting value of the function. • A good consistency check. Initial-Value Theorem limt 0 f (t ) lims s F (s) • Allows one to use the Laplace transform of a function to determine the initial conditions of the function. • A good consistency check Apply Initial- and Final-Value Theorems to this Example 2 Y ( s) s ( s 2) ( s 4) 2 (0) 1 limt f (t ) (0) (0 2) (0 4) 4 limt 0 f (t ) 2 ( ) 0 () ( 2) ( 4) • Laplace transform of the function. • Apply final-value theorem • Apply initialvalue theorem Partial Fraction Expansions s 1 A B (s 2) ( s 3) s 2 s 3 s 1 ( s 2) ( s 3) A B 1 • Expand into a term for each factor in the denominator. A( s 3) Bs 2 • Recombine RHS ( s 2) ( s 3) 3 A 2B 1 s 1 1 2 ( s 2) ( s 3) s 2 s 3 • Equate terms in s and constant terms. Solve. • Each term is in a form so that inverse Laplace transforms can be applied. Heaviside Method Individual Poles N ( s) N ( s) Y (s) D( s ) ( s a1 )( s a2 ) ( s an ) Cn C2 C1 s an s a1 s a2 N (s) Equation 4.4.2 : Ci D( s) /( s ai ) s a i Heaviside Method Individual Poles s3 C1 C2 Y ( s) ( s 1)( s 2) s 1 s 2 N ( s) Equation 4.4.2 : Ci D( s) /( s ai ) s a i s3 s3 C1 2; C2 1 s 2 s 1 s 1 s 2 s3 2 1 Y ( s) ( s 1)( s 2) s 1 s 2 Heaviside Method Repeated Poles N ( s) N ( s) Y (s) n D( s ) ( s a) Cn C1 C2 2 s a (s a) (s a)n 1 d i ( s a)n N ( s) Equation 4.4.2 : Ci i i ds D( s ) s ai Heaviside Method Example with Repeated Poles C3 N (s) s3 C1 C2 Y (s) 2 2 D( s ) ( s 1) ( s 2) s 1 ( s 1) s 2 s3 C2 2; s 2 s 1 s3 C3 2 ( s 1) 1 s 2 n 1 d ( s a) N (s) Equation 4.5.3 : Ci i ds i D( s ) s ai i 1 1 d s 3 s3 C1 1 2 1 ds s 2 s 1 s 2 ( s 2) s 1 s3 1 2 1 Y (s) 2 2 ( s 1) ( s 2) s 1 ( s 1) s 2 Example of Solution of an ODE d2y dy 6 8 y 2 y(0) y' (0) 0 • 2 dt dt s 2 Y (s) 6s Y (s) 8Y (s) 2 / s 2 Y ( s) s ( s 2) ( s 4) 1 1 1 Y ( s) 4s 2 ( s 2) 4 ( s 4) 1 e 2t e 4t y (t ) 4 2 4 ODE w/initial conditions • Apply Laplace transform to each term • Solve for Y(s) • Apply partial fraction expansions w/Heaviside • Apply inverse Laplace transform to each term Overview • Laplace transforms are an effective way to solve linear ODEs.