OTN & OTM - :TRICK-MAN:™ FOREVER, Since 2007

Download Report

Transcript OTN & OTM - :TRICK-MAN:™ FOREVER, Since 2007

Optical Transport Network &
Optical Transport Module
"Digital Wrapper"
Maarten Vissers
Consulting Member of Technical Staff
Lucent Technologies
email: [email protected]
April 2002
Contents

OTN Rationale

OTN Layer Networks

Multi level Connection Monitoring

OTM Signals

Maintenance Signals

Mapping Client Signals

Multiplexing

Virtual Concatenation

OTN Standards
April 2002
2
Contents

OTN Rationale

OTN Characteristics

OTN Layer Networks

Transitional Approaches

Multi level Connection
Monitoring

Final Phase

O/E/O processing
objectives

Digital processing
objectives

OTM Signals

Maintenance Signals

Mapping Client Signals

Multiplexing

Virtual Concatenation

OTN Standards
April 2002
3
OTN Characteristics

New transport networking layer (carrier grade solution)
• Next step (after SDH/SONET) to support ever growing data
driven needs for bandwidth and emergence of new broadband
services
– Terrabit/second per fiber via DWDM lines (transport level)
– Gigabit/second paths at 2.5 Gb/s, 10 Gb/s, 40 Gb/s
(networking level)
• Service transparency for SDH/SONET, ETHERNET, ATM, IP,
MPLS
– No change of SDH/SONET!
– One exception; interpretation of STM-LOF alarm  + STMAIS due to OTN fail
• Enhanced OAM & networking functionality for all services
• Shortest physical layer stack for data services (IP  OTN 
Fiber)
April 2002
4
OTN Characteristics

Gigabit level bandwidth granularity required to scale and
manage multi-Terabit networks
• Wavelength level switching maximizes nodal switching capacity,
the gating factor for reconfigurable network capacity
• Avoids very large numbers of fine granularity pipes that stress
network planning, administration, survivability, and management
April 2002
5
Transitional Approaches - Assessment

Extended SDH (attempt at creating a new layer using SDH
elements)
• Bandwidth multiplication by means of TDM  more Gigabit/s on
fiber (4x)
• Proprietary approaches attempting to carry lower rate STM-N
[including all overhead] as a “service” within a higher rate STM-M
(M>N)
– strongly limited: SDH multiplexing hierarchy not designed to carry
the STM-N (i.e. “itself”) as a service
 No timing transparency
 90% of STM-N/OC-N overhead bytes not passed through
 No STM-N/OC-N independent monitoring
– Multiple proprietary implementations created in industry
 no interworking
April 2002
6
Transitional Approaches - Assessment

Pre-OTN WDM (simple transport - vs. networking - solution)
• Bandwidth multiplication by means of WDM  Terabit/s on fiber
(100x)
• Client signal (e.g. STM-N, GbE) direct on wavelength
– simple transport, no monitoring
– or client specific non-intrusive monitoring
 per client type a monitor is needed
 additional client type implies additional monitor to be
added
– alarm suppression signal (e.g. AIS) specific per client type
 additional client type implies additional alarm suppression
signal to be added
• Point-to-point application that can transport STM-N/OC-N as a
service
April 2002
7
Final Phase

OTN (networking solution)
• Management enabler of WDM network by means of addition of:
– Overhead to "" and "multi-" signals
 "non-associated" or "out-of-channel" overhead; e.g.
preventing alarm storms
– Optical Channel (OCh) layer
 STM-N, IP, ATM and Ethernet signals mapped
("wrapped") into OCh frame (OCh Data Unit (ODUk))
• First transmission technology in which each stakeholder gets its
own (ODUk) connection monitoring
• In addition ODUk supports/provides:
– STM-N independent monitoring, becoming a service signal "itself",
shortest physical layer stack for data services, TDM muxing, STMN inverse multiplexing, client independent protection switching,
plesiochronous timing (no sync network required)
April 2002
8
O/E/O Objectives

Minimise O/E/O processing in OTN
• O/E/O processing at edges of administrative/vendor
(sub)domains
– Span engineering
• O/E/O processing at edges of protected or switched domain
– Span engineering (short/long route effects)
– Signal Fail & Signal Degrade condition determination
 If more than 1 optical transparent subnetwork is included
• O/E/O processing at intermediate points
– Span engineering (long line sections)
– Losses in optical fabrics
• O/E & E/O processing around electrical fabric
April 2002
9
Digital Processing Objectives

Digital processing at locations where O/E/O is already
performed
• Fault and degradation detection
• Service Level Agreement (SLA) verification
• Signal Fail & Signal Degrade condition determination for
protection and restoration (e.g. if high accuracy is required)
April 2002
10
Contents

OTN Rationale

OTN Layer Networks

Layer Networks

Multi level Connection
Monitoring

Client Signals

Optical Channel Structure

OTM Signals

Containment Relationships

Maintenance Signals


Mapping Client Signals
Example of Layer Network
Trails

Multiplexing

OTN Interfaces

Virtual Concatenation


OTN Standards
Standardised and
"Proprietary" Stacks
April 2002
11
OTN Layer Networks & Client Signals

Three new layer
networks:
IP/MPLS ATM
• one "Gbit/s" path
•
•

12
layer
– OCh
two section
layers
– OMSn
– OTSn
single channel
section layer:
– OPS0
Client signals:
• IP/MPLS
• ATM
• Ethernet
• STM-N
ETHERNET STM-N
Optical Channel (OCh)
layer network
Interworking
with pre-OTN
STM-N GbE
Optical Multiplex Section (OMSn)
layer network
OTM
Physical
Section
(OPSn)
Optical Transmission Section (OTSn)
layer network
OTM-0
OTM-nr, n>1
Optical Transport Module of order n
(OTM-n, n1)
April 2002
Optical Channel Structure
13

Multiplexing (TDM)
• ODUk multiplexing

ODUk virtual
concatenation
Optical Channel Payload Unit
(OPUk)
Optical Channel Data Unit (ODUk)
ODUk CF
OPUm (m>k)
ODUm (m>k)
Optical Channel Transport Unit
(OTUk, OTUkV)
GbE
•
– OCh Data Unit
(ODUk)
– OCh Payload Unit
(OPUk, k=1,2,3)
– OCh Transport
Unit (OTUk,
OTUkV)
Analogue: OCh
IP ATM ETHERNET STM-N
STM-N
Optical Channel layer
network consists of 3+1
structures:
• Digital:
TDM

Optical Channel (OCh)
OCh CF
CF: Connection Function
April 2002
OTN Containment Relationships
Non-associated overhead
Associated
overhead
Wrapper
Client
OH
OH
OH
OCh Payload Unit (OPUk)
Client
OCh Data Unit (ODUk)
OPUk
ODUk
FEC
Optical Channel (OCh)
OTUk
OH
OCC
OH
OCC
OCh Transport Unit (OTUk)
Optical Channel Carrier (OCC)
OCC
OPS0
Optical Multiplex Section
Optical Transmission Section
OH
OTM Overhead Signal
OOS
OSC
OSC
Optical Supervisory Channel
Optical Transport Module
Optical Physical Section
April 2002
14
OTN Layer Network Trails

Example of OTSn, OMSn, OCh, OTUk, ODUk, OPS0 trails
• Transport of STM-N signal via OTM-0, OTM-n and STM-N lines
STM-N
ODUk
OMSn
OTSn OTSn
3R
LT
OTM-n
Client
OTM-0
OPS0
DXC 3R
OCh, OTUk
R
OCh, OTUk
OMSn
OTSn OTSn
OMSn
OTSn
OCADM
3R
R
ODXC
LT
OSn
3R
STM-N
OCh, OTUk
DXC
Client
LT Line Terminal w/ optical channel multiplexing
OCADM Optical Channel Add/Drop Multiplexer
ODXC ODU Cross-Connect
3R O/E/O w/ Reamplification, Reshaping & Retiming and monitoring
R Repeater
April 2002
15
OTN Interfaces

User to Network Interface (UNI)

Network Node Interface (NNI)
• Inter Domain Interface (IrDI)
• Intra Domain Interface (IaDI)
 between equipment of different vendors (IrVI)
 within subnetwork of one vendor (IaVI)
Network Operator B
USER
A
OTM
UNI
Network
Operator
C
OTM NNI
IaDI-IrVI
OTM NNI
IaDI-IaVI
Vendor X
OTM NNI
IaDI-IaVI
OTM
NNI
IrDI
Vendor Y
April 2002
16
Standardised & "Proprietary" stacks
Proprietary elements:
wavelengths
• bit rates of
wavelengths
• supervisory
channel

OPUk
ODUkP
ODUk
ODUkT
OTUkV
• FEC
• frame format
• ODUk mapping
used between (and within) OTN
transparent subnetworks
used within OTN transparent
subnetworks; implementations
are very much technology dependent
17
OTUk
OTUkV
OCh
OTUk
OTUkV
substructure
OTM-n.m
• optical parameters
• number of
OCh

Clients (e.g. STM-N, ATM, IP, Ethernet)
OChr
OMSn
OPSn
OTSn
OTM-n.m
Full
functionality
Reduced
functionality
OTM-0.m
OTM-nr.m
April 2002
Contents

OTN Rationale

OTN Layer Networks

Multi level Connection
Monitoring

Application

OTM Signals

Nesting

Maintenance Signals

Overlapping

Mapping Client Signals

Multiplexing

Virtual Concatenation

OTN Standards
April 2002
18
Multi-level Connection Monitoring:
Applications
Status
working
[protection]
isbymonitored
for
ODUk
switched
circuit: UNI-UNI CM
QoS
QoSprovided
of
ofofclient
provided
signal
by leased
leased
transport
circuit
circuit
isconnection
is
is
monitored
monitored
monitored
by
byUser
User
Service
Network
Provider
Operator
to initiate "connection re-establishment"
SF and SD switch conditions
Path CM
Client
Signal
Verify QoS CM
USR2
NO A
UNI-UNI CM
NO B
NNI-NNI CM
ODUk
NO C
Working
W/P CM
USR1
ODUk
Protection
Client
Signal
April 2002
19
Multi-level Connection Monitoring:
Nesting
TCM6
TCM6
TCM6
TCM6
TCM6
TCM6
TCM6
TCM5
TCM5
TCM5
TCM5
TCM5
TCM5
TCM5
TCM4
TCM4
TCM4
TCM4
TCM4
TCM4
TCM4
TCM3
TCM3
TCM3
TCM3
TCM3
TCM3
TCM3
TCM2
TCM2
TCM2
TCM2
TCM2
TCM2
TCM2
TCM1
TCM1
TCM1
TCM1
TCM1
TCM1
TCM1
A1
B1
C1
C2
B2
B3
B4
A2
C1 - C2
B1 - B2
B3 - B4
A1 - A2
TCMi
TCM OH field not in use
TCMi
TCM OH field in use
April 2002
20
Multi-level Connection Monitoring:
Nesting and Overlapping
TCM6
TCM6
TCM6
TCM6
TCM6
TCM5
TCM5
TCM5
TCM5
TCM5
TCM4
TCM4
TCM4
TCM4
TCM4
TCM3
TCM3
TCM3
TCM3
TCM3
TCM2
TCM2
TCM2
TCM2
TCM2
TCM1
TCM1
TCM1
TCM1
TCM1
A1
B1
C1
B2
C2
A2
C1 - C2
B1 - B2
A1 - A2
TCMi
TCM OH field not in use
TCMi
TCM OH field in use
April 2002
21
Contents

OTN Rationale

OTM Interface Signals
• OTM-16r.m
• OTM-0.m
• OTM-n.m

OTN Layer Networks

Multi level Connection
Monitoring

OTM Signals

OTM Signals versus OTN I/F

Maintenance Signals

OTM Overhead Signal

Mapping Client Signals


Multiplexing
Frame Formats
• OTUk, ODUk

Virtual Concatenation

Overhead
• OTUk, ODUk

OTN Standards

OTUkV

Overhead versus OTN I/F
April 2002
22
OTM-16r.m Signal (m=1,2,3,12,23,123)
16 17
O Fr a
TU m
k, eA
O OD lig
ve U n
rh k & me
ea
n
d OP t ,
Uk
2
3
4
1
2
3
4
1
2
3
4
1
1
2
3
4
2
3
4
4080
OTUk FEC
(4 x 256 bytes)
3824 3825
Payload
(4 x 3808 bytes)
16 17
1
1
3824 3825
16 17
O Fr a
TU m
k, eA
O OD lig
ve U n
rh k & me
ea
n
d OP t ,
Uk
1
4080
OTUk FEC
(4 x 256 bytes)
Payload
(4 x 3808 bytes)
O Fr a
TU m
k, eA
O OD lig
ve U n
rh k & me
ea
n
d OP t
Uk





16 17
O Fr a
TU m
k, eA
O OD lig
ve U n
rh k & me
ea
n
d OP t ,
Uk
1
3824 3825
Payload
(4 x 3808 bytes)
4080
OTUk FEC
(4 x 256 bytes)
3824 3825
Payload
(4 x 3808 bytes)
16 17
4080
OTUk FEC
(4 x 256 bytes)
3824 3825
Payload
(4 x 3808 bytes)
4080
OTUk FEC
(4 x 256 bytes)

Up to 16 wavelengths carrying traffic, with fixed 200 GHz grid
independent of bit rate (2G5, 10G, 40G)

Optical parameters according to ITU-T Recommendation G.959.1

Bit rate and format of the associated overhead according to ITU-T
Recommendation G.709

No Optical Supervisory Channel (OSC)
• non-associated overhead not required; i.e. 3R points at each end, no
repeaters
23
1
1
O Fr a
TU m
k, eA
O OD lig
ve U n
rh k & me
ea
n
d OP t ,
Uk
OTM-16r.m

April 2002
1
1
2
3
4
16 17
O Fr a
TU m
k, eA
O OD lig
ve U n
rh k & me
ea O n
d P t,
Uk
OTM-0.m
OTM-0.m Signal (m=1,2,3)
3824 3825
Payload
(4 x 3808 bytes)
4080
OTUk FEC
(4 x 256 bytes)

Single channel signal ("colourless": 1310 or 1550 nm)

Optical parameters according to ITU-T Recommendation
G.959.1

Bit rate and format of the associated overhead according to ITUT Recommendation G.709

No Optical Supervisory Channel (OSC)
• non-associated overhead not required; i.e. 3R points at each end, no
repeaters
April 2002
24
OTM-n.m Signal (m=1,2,3,12,23,123)
OTM-n.m
2
3
4
O Fr a
TU m
k, eA
O
O D lign
ve Uk m
rh & en
ea O t
d P ,
Uk
2
3
O Fr a
TU m
k, eA
O
O D lign
ve Uk m
rh & en
ea O t
d P ,
Uk
2
3
4
O Fr a
TU m
k, eA
O
O D lign
ve Uk m
rh & en
ea O t
d P
Uk
2
3
4
2
3
4
4080
3824 3825
OTUk FEC
(4 x 256 bytes)
3824 3825
4080
OTUk FEC
(4 x 256 bytes)
Payload
(4 x 3808 bytes)
4080
3824 3825
16 17
1
1
OTUk FEC
(4 x 256 bytes)
Payload
(4 x 3808 bytes)
16 17
1
1
4080
3824 3825
Payload
(4 x 3808 bytes)
16 17
1
1
O Fr a
TU m
k, eA
O
O D lign
ve Uk m
rh & en
ea O t
d P ,
Uk


3 

 
4
OTUk FEC
(4 x 256 bytes)
Payload
(4 x 3808 bytes)
16 17
1
1
4080
3824 3825
16 17
1
1
O Fr a
TU m
k, eA
O
O D lign
ve Uk m
rh & en
ea O t
d P ,
Uk
n
Payload
(4 x 3808 bytes)
OTUk FEC
(4 x 256 bytes)
OSC
OTM Overhead Signal (OOS)

Up to "n" wavelengths carrying traffic, with a grid dependent on
bit rate

1 "out-of-band" Optical Supervisory Channel (OSC) transporting
the OTM Overhead Signal (OOS)

OTM Overhead Signal transports OTS, OMS, OCh (nonassociated) overhead and General management communications
April 2002
25
OTM Signals versus OTN Interfaces
OTM-n.m
OTM-16r.m
OTM-0.m
-
X
(Note 1,2)
X
(Note 1,2)
-
X
(Note 1,3)
X
(Note 1,3)
IrVI
-
X
(Note 1,4)
X
(Note 1,4)
IaVI
X
X
X
UNI
NNI
IrDI
IaDI
Note 1 - These interfaces require an OTUk to be present.
Note 2 - A restricted set of ODUk overhead is transparently transported through the network. This is
subject of regulations.
Note 3 - A restricted set of ODUk overhead is transparently transported through the network(s) of
the downstream operator(s). This is subject of regulations.
Note 4 - A restricted set of ODUk overhead is transparently transported through the downstream
subnetwork(s) with equipment of (an)other vendor(s).
Note 5 - Other OTM interfaces may be added in future versions of G.709.
April 2002
26
OTM Overhead Signal (OOS)
«Non-associated overhead»

OOS functions subject to standardization

OOS bit rate & format not standardized
OCh OH extensions may be
expected in future to support e.g.
OCh protection (e.g. OCh SPring)
n
FDI-P
TTI
3
2
1
BDI-O
FDI-O
BDI-P
BDI-P
FDI-P
PMI
PMI
OCh
BDI-O
OMSn
OTSn
Non-Associated
overhead
FDI-O
Vendor
Specific
OCI
General Management Communications
BDI: Backward Defect Indication
FDI-O: Forward Defect Indication - Overhead
FDI-P: Forward Defect Indication - Payload
OCI: Open Connection Indication
PMI: Payload Missing Indication
TTI: Trail Trace Identifier
April 2002
27
OTUk
OH
2
3
ODUk
OPUk OH
Client Signal
mapped
in
OPU
k Payload
OPUk Payload
4080
3825
3824
14
15
16
17
7
8
1
1 Alignm
OTUk
FEC
4
Client Signal
OPUk - Optical Channel Payload Unit
ODUk - Optical Channel Data Unit
k indicates the order:
1
2.5G
OTUk - Optical Channel Transport Unit
2
10G
3
40G
Alignment
April 2002
28
OTUk bit rate: 255/(239-k) * "STM-N"
ODUk bit rate: 239/(239-k) * "STM-N"
OTUk and ODUk frame formats (k=1,2,3)
OTUk and ODUk Overhead (k=1,2,3)
«Associated overhead»
Column
2
3
4
OTUk
FRAME ALIGNMENT
MFAS
AlignmFAS OVERHEAD AREA
OH
TCM
TCM6
RES
ACT
TCM3
GCC1
ODUk
GCC2
OPUk OH
1
7
8
14
OTUk
AREA
SMSPECIFIC OVERHEAD
GCC0
RES
TCM5
TCM4
OPU k Payload
TCM2 ODUk SPECIFIC
TCM1OVERHEAD AREA
PM
APS/PCC
15
16
OPUk SPECIFIC
OVERHEAD
AREA
1
Row
RES JC
Mapping
JC
& Concat
FTFL RES
Specific
EXP
RES JC
RES
PSI
NJO PJO
BDI
BDI
BDI
IAE
TCMi
PM
TCMi
ACT: Activation/deactivation control channel
MFAS: MultiFrame Alignment Signal
1
3
0
1
9
10
127
128 2
129Protection137
138
APS: Automatic Protection Swiching
PCC:
Communication
Control channel255
1 5 6 7 8 1 2 3 4
2 5 6 7 8 1 2 3 3
1 2 3 4
4 5 0 6 7 PT
8
1
2
3
Operator channel
Operator
coordination
PM:
Path
Monitoring
Operator
Specific
Operator
Specific
FTFL
1 7 8
1 2 3 4 5 6 7 8 1 2 3 4 5 6
7 8 1 2 3 4 5 6
Identifier
Identifier
1 2 3 4 5 TTI
6 7 8 1 2 3 4 PSI:
5BIP-8
6 Payload
7
8 1Structure
2 3 BEI
4Identifier
5 6 7 STAT
8
EXP: Experimental
Mapping
BIP-8ReservedBEI/BIAE
FAS:FaultFrame Alignment Signal
RES:
forBEI/BIAE
future international
& Concat
TTITTI
BIP-8
STATRES
Fault
Forward
Backward
FTFL:
Fault Type & Fault Location
Indication
Indicationstandardisation
255 Specific
Field reporting
Field Section Monitoring
channel
0
15 16
31SM:
32
63
GCC: GeneralSource
Communication
Access Channel
Destination Access TCM: Tandem Connection Monitoring
Operator Specific
TTI
Point Identifier
Point Identifier
April 2002
29
OTUkV (k=1,2,3)

Frame format is vendor specific

Forward Error Correction code is vendor specific

Minimum overhead set to support is:
• Trail Trace Identifier
• Error Detection Code (e.g. BIP)
• Backward Defect Indicator
• Backward Error Indicator
• (Backward) Incoming Alignment Error

Other overhead is vendor specific

ODUk mapping into OTUkV is vendor specific
April 2002
30
Overhead versus OTN Interfaces

OTM Interface Ports on IP Router, ATM Switch, Ethernet
Switch and SDH equipment should support the
following minimum set of overhead
• OPUk Client Specific
• OPUk Payload Structure Identifier (PSI)
• ODUk Path Monitoring (PM)
• OTUk Section Monitoring (SM)
• Frame Alignment (FAS, MFAS)
1
3
4
FAS
5
6
7
MFAS
8
9
10
11
12
13
14
15
16
SM
PM
3
OPUk
Payload
Client
Specific
2
OTUk FEC
1
2
PSI
4
all-0's pattern
April 2002
31
Overhead versus OTN Interfaces

USER
A
Overhead passed through network
• OTM UNI to OTM UNI
• OTM NNI IrDI to OTM NNI IrDI
OTM
UNI
Network
Operator
K
OTM
NNI IrDI
Network
Operator
L
OTM
NNI IrDI
Network
Operator
M
OTM
UNI
User
Z
April 2002
32
Overhead versus OTN Interfaces
Overhead passed through network from OTM UNI to
OTM UNI interface
• OPUk PSI, Client Specific
• ODUk PM, TCM ACT, TCM1..TCMn, TCM ACT, RES
• ODUk GCC1, GCC2 according contract
• ODUk APS/PCC definition is under study

1
2
4
5
6
RES
3
TCM3
GCC1
8
9
SM
MFAS
TCM
ACT
TCM6
TCM2
GCC2
10
11
GCC0
TCM5
TCM1
APS/PCC
12
TCM4
PM
RES
passed through
terminated and re-inserted
based on contract
may be overwritten in network
13
14
15
16
RES
FTFL
Client
Specific
EXP
OPUk
Payload
2
7
OTUk FEC
FAS
1
4
3
PSI
based on regulations and contract
TCM1..TCMn are passed through,
TCMn+1..TCM6 may be overwritten
definition is under study
April 2002
33
Overhead versus OTN Interfaces

Overhead passed through network from OTM NNI IrDI
to OTM NNI IrDI interface
• OPUk PSI, Client Specific
• ODUk PM, TCM ACT, TCM1..TCMm, TCM ACT, FTFL, RES
– "m" in TCMm > "n" in TCMn (UNI-UNI)
• ODUk GCC1, GCC2 according contract
• ODUk APS/PCC definition is under study
1
2
4
5
6
RES
3
TCM3
GCC1
8
9
SM
MFAS
TCM
ACT
TCM6
TCM2
GCC2
10
11
GCC0
TCM5
TCM1
APS/PCC
12
TCM4
PM
RES
passed through
terminated and re-inserted
based on contract
may be overwritten in network
13
14
15
16
RES
FTFL
Client
Specific
EXP
OPUk
Payload
2
7
OTUk FEC
FAS
1
4
3
PSI
based on regulations and contract
TCM1..TCMm are passed through,
TCMm+1..TCM6 may be overwritten
definition is under study
April 2002
34
Contents

OTN Rationale

OTN Layer Networks

Multi level Connection
Monitoring

OTM Signals

Maintenance Signals

Mapping Client Signals

Multiplexing

Virtual Concatenation

OTN Standards

Forward Defect Indication
(FDI, AIS)

Backward Defect & Error
Indication (BDI, BEI)

Open Connection
Indication (OCI)

Locked (LCK)

Fault Type & Fault Location
(FTFL)
April 2002
35
OTN Maintenance Signals:
Alarm Suppression
R
use of OTN maintenance
signals FDI, AIS and PMI will
reduce number of alarms
from 500k to 1 per broken fiber
R
R
use of OTN maintenance
signal OTS-PMI (and OMS-PMI)
will prevent OTS [OMS] LOS alarm
when none ofs is presentOCh-FDI
OMS-FDI
OCh-FDI
at line termination point
OMS-FDI is converted
into OCH-FDI
at 3R point OCh-FDI
is converted into
ODUk-AIS
OCh-FDI
3R
R
OTS-PMI OTS-PMI
1000 /fiber
x 96 fibers/cable
OCh-FDI
x 5 cables/duct
= 500k lost signals
==> 500k LOS alarms in network
36
R
April 2002
OCh-FDI
OCh
OMSn-FDI
OTSn
OCh-FDI
OCh
OMSn

AIS/FDI at
• clients

AIS at
• ODUk

AIS at
• OTUk

FDI at
• OCh

FDI/PMI at
• OMSn

PMI at
• OTSn
?
Ethernet
MPLS-FDI
MPLS
OCh-FDI
OCh
ODUk-AIS
?
IP
OTSn-PMI
OCh-FDI
OCh-FDI
OCh
OMSn-PMI
OCh
VP-AIS
ATM
OCh-FDI
ODUk-AIS
gen-AIS
OCh
OTUk-AIS
Future server layer
OTUk
ODUk
CBR
(STM-N)
OTN Maintenance Signals:
Alarm Suppression (FDI, AIS)
April 2002
37
OTN Maintenance Signals:
Alarm Suppression (FDI, AIS)

Generated at egress of OMSn, OCh and ODUk Link
Connections

Inserted on detection of Signal Fail

OMSn-FDI and OCh-FDI
• is non-associated overhead

ODUk-AIS
• is special ODUk signal pattern (0xFF)
17
3824
STAT
FTFL
OTUk OH
STAT
3
STAT
2
14
STAT
STAT
FA OH
STAT
1
78
STAT
1
All-1's pattern
4
April 2002
38
Generic-AIS [STM-AIS]

New maintenance signal @ STM-N level
• a continuous repeating 2047-bit PN-11 (1 + x9 + x11) sequence

Generated in OTN tributary ports
• ingress trib: on detection of STM-N LOS
• egress trib: on detection of ODUk signal fail type defect

To be detected in SDH line/trib ports in addition to STM-LOF as
"STM-AIS"
•  In existing equipment detected as STM-LOF 
insertion
OTN
with SDH trib
SDH
STM
OOF/IF dLOF
STM-N
STM
framer
dAIS
ODUk
OTM-n
ODUk
gen.
AIS
gen.
AIS
SDH
STM-N
LOS
LOS
STM-N
descr
gen.
AIS
detection
OTN
with SDH trib
ODUk
OTM-n
ODUk
gen.
AIS
descr
framer
STM-N
STM
dLOF
STM
dAIS
OOF/IF
April 2002
39
OMSn-BDI-P
OMSn-BDI-O
OMSn
OTSn-BDI-P
OTSn-BDI-O
OTSn

RDI/REI at
• Clients

BDI/BEI at
• ODUk
• OTUk

No BI at
• OCh

BDI at
• OTSn
• OMSn
OCh
?
OCh
BDI
Ethernet
MPLS
IP
?
OCh
OCh
RDI
REI
OCh
ATM
OTUk-BDI
OTUk-BEI
OCh
ODUk-BDI
ODUk-BEI
Future server layer
ODUk
RDI
REI
OTUk
CBR
(STM-N)
OTN Maintenance Signals:
Backward Information (BDI, BEI)
April 2002
40
OTN Maintenance Signals:
Open Connection Indication (OCI)

Generated in a Fabric

Inserted when output port is not connected to input
port

OCh-OCI
• is non-associated overhead

ODUk-OCI
• special ODUk signal pattern (0x66)
17
3824
STAT
OTUk OH
STAT
3
STAT
2
14
STAT
STAT
FA OH
STAT
1
78
STAT
1
Repeating "0110 0110" pattern
4
April 2002
41
OTN Maintenance Signals:
Locked (LCK)

Generated in ODUk Tandem Connection endpoint

Inserted when Administrative State is Locked
• to block a user to access the connection
• to prevent test patterns within the network entering a user
domain
ODUk-LCK
• special ODUk signal pattern (0x55)

17
3824
STAT
OTUk OH
STAT
3
STAT
2
14
STAT
STAT
FA OH
STAT
1
78
STAT
1
Repeating "0101 0101" pattern
4
April 2002
42
Fault Type & Fault Location (FTFL)

Helps Service Provider to automatically locate fault/degradation to
specific Network Operator domain

No need to call around any longer

Section and Tandem Connection endpoints insert FTFL in forward
direction on detection of SF or SD condition

Specific FTFL function at UNI
• extracts forward info and sends it in opposite direction as backward info
• filters outgoing and incoming FTFL information (security issue)

Specific FTFL extraction function
• reads FTFL forward and backward information at intermediate point along
ODUk Path Termination
X:SP
NO D
A:X
B:X
IrDI
IrDI
IrDI
NO B
IrDI
IrDI
NO C
SP:X
43
NO A
X:A
CUSTOMER
IrDI
connection
CPE1
B:X
ODUk UNI Tandem Connection Termination
ODUk Tandem Connection Termination
OTUk Section Termination
Equipment
April 2002
Contents

OTN Rationale

OTN Layer Networks

Multi level Connection
Monitoring

OTM Signals

Maintenance Signals

Mapping Client Signals



Multiplexing
Virtual Concatenation
OTN Standards

CBR (e.g. STM-N)

IP, ETHERNET

ATM

Test Signals

Bit stream with/without
octet timing

Bit Rate Agnostic CBR
April 2002
44
4
1
2
3
4
3824
D
3805D
D
3824
D
1921
3805D
1920
DD
1904
1905
D
118 x 16D
16FS
119 x 16D
118 x 16D
16FS
119 x 16D
118 x 16D
16FS
119 x 16D
16FS
119 x 16D
15D + 117 x 16D
3824
3
3805D
2560
2561
2
DD
2544
2545
1
D
1280
1281
4
3805D
1264
1265
3
PSI RES RES RES 15
NJO JC JC JC 16
PJO
17
18
2
DD
PSI RES RES RES 15
NJO JC JC JC 16
PJO
17
demapper, and
• bit synchronous
mapping has
fixed
Justification
Control (JC)
1
PSI RES RES RES 15
NJO JC JC JC 16
PJO
17
G.709 defines
interworking
between both
mappings
• common
STM-64

G.709 provides
two mappings for
STM-N signals
• bit synchronous
• asynchronous
STM-256

STM-16
Mapping STM-N (N=16,64,256)
78 x 16D
16FS
79 x 16D
16FS
79 x 16D
78 x 16D
16FS
79 x 16D
16FS
79 x 16D
78 x 16D
16FS
79 x 16D
16FS
79 x 16D
16FS
79 x 16D
16FS
79 x 16D
15D + 77 x 16D
D: Data, FS: Fixed Stuff, JC: Justification Control, N/PJO: Negative/Positive JustificationApril
Opportunity
2002
45
Mapping IP and Ethernet

G.709 provides an encapsulation for packet based client
signals

There is no need for SDH or 10G-Ethernet to encapsulate IP

A new protocol is being defined: Generic Framing Procedure
• a generic mechanism to carry any packet signal over fixed rate
channels (e.g. SDH, SONET and OTN's ODUk) - ITU-T Rec. G.gfp
15 16 17
2
3
4
PSI RES RES RES
RES RES RES RES
1
3824
OPUk Payload
OPUk
Overhead
0
1
PSI
255
PT
GFP Frame
GFP Idle Frame
RES
4
4-65535
bytes
4
bytes
Bandwidth for GFP stream in
ODU1: 2 488 320 kbit/s
ODU2: 9 995 276 kbit/s
ODU3: 40 150 519 kbit/s
April 2002
46
Generic Framing Procedure G.7041
2
1
2
3
1
Core
Header
3
4
PLI
PLI
cHEC
cHEC
5
<15:08>
6
<07:00>
7
<15:08>
8
<07:00>
<15:08>
<07:00>
<15:08>
<07:00>
5
5
6
6
1 2 3 4 5 6 7 8
7
7
5
8
Payload
Area
Payload
Header
GFP Frame
Bit
Octet
1 2 3 4 5 6 7 8
4
GFP Idle
47
X+4
eHEC
eHEC
N-3
N-2
N-1
N
pFCS
pFCS
pFCS
pFCS
<31:24>
<23:16>
<15:08>
<07:00>
UPI
<15:08>
1 2 3 4 5 6 7 8
<07:00>
9
4  X  64
optional
Payload FCS
3
00 (B6) hex
00 (AB) hex
00 (31) hex
00 (E0) hex
X+3
EXI
<07:00>
Extension
Header
Payload
Information
Field
PTI
<15:08>
N  65536
2
6
10
X+5
N
TYPE
TYPE
tHEC
tHEC
9
X+4
1
5
1 2 3 4 5 6 7 8
4
8
TYPE
TYPE
tHEC
tHEC
Null Header
Bit
Octet
1 2 3 4 5 6 7 8
PFI
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
11
12
<07:00>
CID
Spare <07:00>
eHEC <15:08>
eHEC <07:00>
Linear with Frame
Multiplexing
<15:08>
<07:00>
CID: Channel ID
EXI: Extension Header ID
FCS: Frame Check Seq
HEC: Header Error Check
PFI: Payload FCS Ind
PLI: Payload Length Ind
PTI: Payload Type ID
UPI: User Payload ID
April 2002
Mapping ATM

G.709 provides a mapping for cell based client signals

Mapping ATM into ODUk is similar to mapping into SDH
15 16 17
2
3
4
PSI RES RES RES
RES RES RES RES
1
3824
OPUk Payload
OPUk
Overhead
0
1
PSI
255
PT
ATM cell
RES
53 bytes
Bandwidth for ATM stream in
ODU1: 2 488 320 kbit/s
ODU2: 9 995 276 kbit/s
ODU3: 40 150 519 kbit/s
April 2002
48
Mapping Test Signals

G.709 provides a mapping for test signals

Two test signals are defined
• NULL sequence (all-0's)
Column
15
Row
16
17
18
3824
1 RES RES
2 RES RES
All-0's pattern
3 RES RES
4
PSI RES
OPUk OH
OPUk Payload (4 x 3808 bytes)
0
1
PSI
T1542830-00
(114739)
PT
RES
255
April 2002
49
Mapping Test Signals

Two test signals are defined (continued)
• 2 147 483 647-bit Pseudo Random Binary Sequence (PRBS)
1 + x28 + x31
2
3
4
PSI RES RES RES 15
RES RES RES RES 16
17
18
1
3824
– groups of 8 successive PRBS bits are mapped into a data byte
D D
3805x D
D
D D
3805x D
D
D D
3805x D
D
D D
3805x D
D
OPUk Payload (4 x 3808 bytes)
OPUk OH
0
1
PSI
PT
RES
255
April 2002
50
Mapping bit stream with[out] octet timing

G.709 provides a generic mapping for client signals
encapsulated into a bit stream, with or without octet timing

A regional standards organisation or an industry forum may
deploy this mapping for a new client signal

It must also define the OPUk Client Specific (CS) overhead
Column
Row
15
16
17
18
3824
1 CS CS
2 CS CS
3 CS CS
4 PSI CS
OPUk Payload (4 x 3808 bytes)
OPUk OH
0
1
PSI
PT
RES
CS: Client Specific overhead
255
51
April 2002
Bit Rate Agnostic CBR Mapping

New mapping method which maps a CBR signal of any
rate (within a range up to OPUk payload capacity)

Bit rate is a fixed bit rate with a small tolerance in the
ppm range.

For inclusion in G.709 version 2

Description in G.709 Living List

Further development in 2001/2002 timeframe
April 2002
52
Contents

OTN Rationale

OTN Layer Networks

Multi level Connection
Monitoring

OTM Signals

Maintenance Signals

Mapping Client Signals

Multiplexing

Virtual Concatenation

OTN Standards

Wavelength Division
Multiplex (WDM)

Time Division Multiplex
(TDM)

TDM Tributary Slots

TDM Overhead

TDM Mapping
April 2002
53
Wavelength Division Multiplex

OTM-16r.m signal
• 16 channels
• fixed 200 GHz grid independent of bit rate of OCh signal
• designed for interworking purposes

OTM-n.m signal
• no predefined number of channels
• no predefined grid
• grid may depend on bit rate of OCh signal
– e.g. 25, 50, 100 GHz for OTU1, OTU2, OTU3 resp.
• developments in technology are driving capabilities
April 2002
54
Wavelength Division Multiplex - Structure
OTM-0.m
OCCr
x1
x1
OChr
xi
x1
OTM-nr.m
xj
OCG-nr.m
1  i+j+k  n
OCCr
x1
x1
OChr
OTU3[V]
xk
OCCr
x1
OChr
x1
OCC
x1
OCh
OTU2[V]
x1
xi
OTU1[V]
x1
OTM-n.m
xj
OCG-n.m
x1
1  i+j+k  n
OCC
OCh
x1
xk
OCC
OSC
x1
x1
OOS
x1
OCh
x1
OTS, OMS, OCh, COMMS OH
April 2002
55
Time Division Multiplex

TDM muxing in the OTN will be applied for:
• lower rate service signal transport
– in long distance line systems and/or sub-networks
optimised for single (higher) bit rate
• increased throughput
– in optical fabrics and/or sub-networks
• reduced administrative complexity
– in large networks
• lower cost networks

TDM muxing introduces additional complexity when
tributary signal must be routed
• requires demux and mux stages around switch fabric
April 2002
56
Time Division Multiplex

TDM muxing is muxing of ODUk signals into higher
order ODUk signals
• ODU1 into ODU2
• ODU1 and/or ODU2 into ODU3
– ODU1 into ODU2 into ODU3 is possible, but not the
recommended method when ODU1s are the service signals that
are to be switched/cross connected within an "ODU3 network"
– if ODU1s enter such ODU3 network via ODU2, the ODU2 is
terminated at the edge and the ODU1s are remultiplexed into an
ODU3
– if ODU2 is service signal, of course no demuxing/remuxing will
occur at edges

Multiplexing via byte interleaving
April 2002
57
Time Division Multiplex - Structure
OTU3[V]
x1
ODU3
x1
Client Signal
OPU3
x1
ODTUG3
x 16
x4
OTU2[V]
x1
ODU2
x1
Client Signal
OPU2
x1
ODTUG2
OTU1[V]
x1
x4
ODU1
Multiplexing
x1
OPU1
Mapping
April 2002
58
Client
Signal
Time Division Multiplex - artist impression
4x ODU1 into ODU2
payload
• ODU1 adapted to

ODU1 floats in ¼ of
the OPU2
ODU1 OH
ODU1 frame will
cross an ODU2
frame boundary
Client Layer Signal
(e.g. STM-16, ATM, GFP)
ODU2 OH
Alignm
OTU2
OH
ODU2 OH
Alignm
Alignm
Alignm
Alignm
Alignm
Alignm
Alignm
Alignm
ODU1 OH
ODU1 OH
ODU1 OH
ODU1 OH
OPU1 OH
OPU1 OH
OPU1 OH
OPU1 OH
ODU2
OPU2 OH
4x
OTU2

OPU1 OH
ODU1
ODU1 OH
ODU1 OH
ODU1 OH
ODU1 OH
OPU1 OH
OPU1 OH
OPU1 OH
OPU1 OH
ODU2 clock via
justification
• adapted ODU1
signals byte
interleaved into
OPU2
• ODU2 and OTU2
overhead added
Alignm
OPU2 OH

Client Layer Signal
Client(e.g.
Layer
Signal
STM-16)
Client(e.g.
Layer
Signal
STM-16)
Client(e.g.
Layer
Signal
STM-16)
(e.g. STM-16, ATM, GFP)
Client Layer Signal
Client(e.g.
Layer
Signal
STM-16)
Client(e.g.
Layer
Signal
STM-16)
Client(e.g.
Layer
Signal
STM-16)
(e.g. STM-16, ATM, GFP)
OPU2 Payload
OTU2
FEC
NOTE - The ODU1 floats in ¼ of the OPU2 Payload area. An ODU1 frame will cross multiple ODU2 frame boundaries.
A complete ODU1 frame (15296 bytes) requires the bandwidth of (15296/3808 = ) 4.017 ODU2 frames. This is not illustrated.
April 2002
59
4
10
4
11
4
60
3
1
2
3
1
2
3
OPU2 Payload
(4 x 3808 bytes)
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
OPU2 Payload
(4 x 3808 bytes)
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
OPU2 Payload
(4 x 3808 bytes)
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
2
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
01
JOH TS 1
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
1
JOH TS 2
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
3
OPU2 Payload
(4 x 3808 bytes)
JOH TS 3
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
2
JOH TS 4
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
OPU2 TribSlot 1
OPU2 TribSlot 2
OPU2 TribSlot 3
OPU2 TribSlot 4
PSI
4
PSI
00
PSI
3821
3822
3823
3824
15
16
17
18
19
20
21
Column
MFAS
1
bits Row
78
1
PSI
Time Division Multiplex ODU2 Tributary Slot Allocation
April 2002
4
0001
4
1111
4
61
1
2
3
1
2
3
OPU3 TribSlot 15
OPU3 TribSlot 16
OPU3 Payload
(4 x 3808 bytes)
OPU3 TribSlot 15
OPU3 TribSlot 16
OPU3 Payload
(4 x 3808 bytes)
OPU3 TribSlot 15
OPU3 TribSlot 16
JOH TS 1
OPU3 TribSlot 1
OPU3 TribSlot 2
OPU3 TribSlot 3
OPU3 TribSlot 4
OPU3 TribSlot 5
OPU3 TribSlot 6
OPU3 TribSlot 7
OPU3 TribSlot 8
OPU3 TribSlot 9
OPU3 TribSlot 10
OPU3 TribSlot 11
OPU3 TribSlot 12
OPU3 TribSlot 13
OPU3 TribSlot 14
OPU3 TribSlot 15
OPU3 TribSlot 16
OPU3 TribSlot 1
OPU3 TribSlot 2
OPU3 TribSlot 3
3
OPU3 Payload
(4 x 3808 bytes)
JOH TS 2
OPU3 TribSlot 1
OPU3 TribSlot 2
OPU3 TribSlot 3
OPU3 TribSlot 4
OPU3 TribSlot 5
OPU3 TribSlot 6
OPU3 TribSlot 7
OPU3 TribSlot 8
OPU3 TribSlot 9
OPU3 TribSlot 10
OPU3 TribSlot 11
OPU3 TribSlot 12
OPU3 TribSlot 13
OPU3 TribSlot 14
OPU3 TribSlot 15
OPU3 TribSlot 16
OPU3 TribSlot 1
OPU3 TribSlot 2
OPU3 TribSlot 3
PSI
0000
PSI
2
JOH TS 16
OPU3 TribSlot 1
OPU3 TribSlot 2
OPU3 TribSlot 3
OPU3 TribSlot 4
OPU3 TribSlot 5
OPU3 TribSlot 6
OPU3 TribSlot 7
OPU3 TribSlot 8
OPU3 TribSlot 9
OPU3 TribSlot 10
OPU3 TribSlot 11
OPU3 TribSlot 12
OPU3 TribSlot 13
OPU3 TribSlot 14
OPU3 TribSlot 15
OPU3 TribSlot 16
OPU3 TribSlot 1
OPU3 TribSlot 2
OPU3 TribSlot 3
3821
3822
3823
3824
31
32
33
34
15
16
17
18
19
20
21
22
23
Column
MFAS
bits Row
1
5678
1
PSI
Time Division Multiplex ODU3 Tributary Slot Allocation
April 2002
Time Division Multiplex - Overhead
MSI, JC, PJO1, PJO2
15
16
17
3821
3822
3823
3824
Column
JC
2
NJO
PSI
3
4
OPUk Payload
(4 x 3808 bytes)
JC
1
JC
Row
PJO
1 2 3 4 5 6 7 8
JC
0
OPU2
62
48
1111
PJO2
11
0010
32
PJO2 33
PJO2
34
PJO2
35
Reserved
0001
PJO1
10
MFAS
bits 5678
0000
PJO1
01
OPU3
PJO1 17
18
19
17
18
MFAS
bits 78
00
PJO1
MSI
PJO1 17
18
PJO1
19
PJO1
20
PJO2 21
PJO2
22
PJO2
23
PJO2
24
2
255
JC
Reserved
PJO1
1
Reserved
April 2002
Time Division Multiplex - Mapping

Asynchronous mapping of ODU information bytes

-1, 0, +1, +2 byte justification control

ODU1 into ODU3 mapping includes Fixed Stuff column
• ODU1 into ODU2 and ODU2 into ODU3 mapping is without
3823
3824
3808
3809
31
32
33
1919
1920
1921
OPU3 Payload
transporting
16x ODU1
OPU3 TribSlot 15
OPU3 TribSlot 16
4
PSI
3
OPU3 Payload
transporting
16x ODU1
OPU3 TribSlot 1
2
FOPU3
IX TribSlot 1
ED
ST
U 15
OPU3 TribSlot
FF
OPU3 TribSlot 16
1
OPU3 TribSlot 15
OPU3 TribSlot 16
16
JOH
OPU3 TribSlot 1
1
Row
17
Column
1904
1905
fixed stuff
April 2002
63
Contents

OTN Rationale

OTN Layer Networks

Multi level Connection
Monitoring

OTM Signals

Maintenance Signals

Mapping Client Signals

Multiplexing


Virtual Concatenation
OTN Standards

ODUk-Xv

OPUk-Xv Overhead

Mapping Client signals
April 2002
64
Virtual Concatenation

Virtual Concatenated ODUk's
• ODUk-Xv, with X=1..256

Provide
• Ability to transport STM-64 and STM-256 signals via fibers
not supporting 10G and/or 40G wavelengths
– STM-64 into ODU1-4v
– STM-256 into ODU2-4v or ODU1-16v
• Finer granularity bandwidth for data signals
– X * 2G5 [10G] [40G] via ODU1-Xv [ODU2-Xv] [ODU3-Xv]
– Application of Link Capacity Adjustment Scheme (LCAS,
Rec. G.7042) offers
 Hitless bandwidth modification
 Build in resilience when signal components routed via
two or more diverse routes
April 2002
65
3824X
3823X+1
16X
15X
15X+1
14X+1
14X+2
Virtual Concatenation - Inverse muxing
1

Mapping of
client signal
into OPUk-X

Inverse muxing
of OPUk-X
signal into X
OPUk signals

ODUk overhead
is added to
each of the X
OPUk signals
2
OPUk-X Payload
3
4
OPUk-Xv Payload (4 x 3808 x X bytes)
OPUk-Xv OH
(8 x X bytes)
15
16
17
18
3824
15
16
3824
3
VCOH
1
2
2
VCOH
1
OPUk-Xv
4 PSI
OPUk#X
3
4 PSI
OPUk OH
66

ODUk signals
are transported
OPUk#1
OPUk Payload (4 x 3808 bytes)
April 2002
Virtual Concatenation - Overhead
CTRL
GID
RSA
MST
CRC8
Res
15
VCOH
1
1
VCOH
2
2
VCOH
3
3
4
0
1
2
PSI
16
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
00000
0
MFI1
0 1 2 3 4 5 6 7
CRC8
00001
1
MFI2
8 9
CRC8
00010
2
Reserved
CRC8
00011
3
Reserved
CRC8
00100
4
SQ
CRC8
00100
5
CTRL
Reserved
11111
CRC8
RES
PT
vcPT
RES
VCOH3
Member Status
MST
(0 - 255)
CRC8
255
–
–
–
–
–
–
Column #
VCOH2
GID
RSA
VCOH
• MFI1, MFI2
• SQ
• LCAS
MFAS
45678
Mapping specific

VCOH1
PSI
• vcPT
Row#

31
SQ, CRC8
MFI1
1 2 3 4 5 6 7 8
CRC8
MFI2
CTRL
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 2 3 4
254
255
RSA: RS-Ack
67
MSB
LSB MSB
LSB MSB
April 2002
LSB
2
4
68
PSI
VCOH
1
3
PSI
X=16
15231D
15231D
15231D
15231D
Column
15231D
15231D
15231D
15231D
3
4 x 3808D - 1
4
4 x 3808D - 1
3824X
4 x 3808D - 1
STM-64 into OPU1-4v
STM-256 into OPU2-4v
3824X
2
4 x 118 x 16D - 1
4 x 16FS
4 x 119 x 16D
4 x 118 x 16D - 1
4 x 16FS
4 x 119 x 16D
4 x 118 x 16D - 1
4 x 16FS
4 x 119 x 16D
4 x 118 x 16D - 1
4 x 16FS
4 x 119 x 16D
STM-256 into OPU1-16v
15231D
15231D
15231D
15231D
15231D
15231D
15231D
15231D
April 2002
3824X
4 x 3808D - 1
2871X+18
2871X+13
1
1920X+1
1920X
1904X
190X+1
17X
X=4
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
NJO NJO NJO NJO
PJO PJO PJO PJO
4
1919X+13
3
1919X+9
2
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
NJO NJO NJO NJO
PJO PJO PJO PJO
Test signals
1
968X+9
GFP (IP, ETH,
MPLS)
967X+4

14X+1
14X+2 PSI
VCOH
14X+1
14X+3 PSI
VCOH
14X+2
15X
PSI
VCOH
14X+3
15X+1 PSI
VCOH
15X
15X+2 JC JC JC JC 15X+1
15X+3 JC JC JC JC 15X+2
16X
JC JC JC JC 15X+3
16X+1 NJO NJO NJO NJO 16X
16X+2 PJO PJO PJO PJO 16X+1
16X+3
16X+2
17X
16X+3
ATM
PSI
VCOH
PSI
VCOH
PSI
VCOH
PSI
VCOH
JC JC JC JC
JC JC JC JC
JC JC JC JC
NJO NJO NJO NJO
PJO PJO PJO PJO

15X+5
15X+1
15X
STM-N
• asynchronous
• bitsynchronous
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
NJO NJO NJO NJO
PJO PJO PJO PJO
Row
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
JC
NJO NJO NJO NJO
PJO PJO PJO PJO

14X+1

VCOH
Virtual Concatenation - Mapping
Contents

OTN Rationale

OTN Layer Networks

Multi level Connection
Monitoring

OTM Signals

Maintenance Signals

Mapping Client Signals

Multiplexing

Virtual Concatenation

OTN Standards
April 2002
69
OTN Standards in ITU-T - Transport Plane
70

Framework
G.871 (10/00)

Network Architecture
G.872 (10/01)

Structures and bit rates
G.709 (02/01), G.709 am.1 (10/01)

Equipment
G.798 (10/01)

Equipment Management Function
G.874 (10/01), G.7710 (11/01)

Protection
G.gps (2002), G.otnprot (2002)

Data Communication Network
G.7712 (10/01)

Jitter & Wander Performance
G.8251 (2002)

Error Performance
G.optperf (2002)

Physical
G.959.1 (02/01), G.693, G.dsn (2003)

Information Model
G.874.1 (10/01), G.875 (2002)

Optical Safety
G.664 (06/99)

Generic Framing Procedure
G.7041 (10/01)

Link Capacity Adjustment Scheme
G.7042 (10/01)

Bringing into Service & Maintenance
M.24otn (2003)

Q factor measurement
O.qfm (?)
April 2002
OTN Standards in ITU-T - Control Plane

Automatic Switched Transport
Network
G.807 (05/01)

Automatic Switched Optical Network
G.8080 (10/01)

Distributed Connection Management
G.7713 (10/01)

Automatic Discovery Techniques
G.7714 (10/01)

Routing
G.7715 (2002)

Signalling Communication Network
G.7712 (10/01)

Link Resource Manager
G.7716 (2002?)
April 2002
71
OTN Standards in ITU-T
ITU-T OTN Recommendations
Transport Plane
Network Architecture
(G.872)
Structures & Mappings
(G.709)
Framework for OTN Rec's
(G.871/Y.1301)
Physical Layer
(G.959.1, G.692, G.693, G.dsn)
Equipment Functional Spec.
(G.798, G.806)
Equipment Man. Function
(G.874, G.7710)
Information Model
(G.874.1, G.875)
Protection Switching
(G.otnprot, G.gps)
Automatic Power Shut Down
Procedures for Optical
Transport Systems (G.664)
Data & Signalling
Communication Network
(G.7712)
Jitter/Wander Performance
(G.8251)
Error Performance
(G.optperf)
Bringing into Service &
Maintenance for the OTN
(M.24otn)
April 2002
72
OTN Standards in ITU-T
ITU-T Recommendations
Control Plane
Automatic Switched
Transport Network
(G.807)
Automatic Switched
Optical Network
(G.8080)
Distributed Call & Connection
Management
(G.7713, G.7713.x (x=1,2,3))
Automatic Neighbor Discovery
Techniques
(G.7714)
Link Resource Manager
(G.7716)
Routing
(G.7715)
Connection Admission Control
(G.cac)
Data & Signalling
Communication Network
(G.7712)
April 2002
73
THANK YOU