LES 2 : Arbeidstheorema’s en energieprincipes

Download Report

Transcript LES 2 : Arbeidstheorema’s en energieprincipes

Lecture 1 :
Work and Energy
methods
Hans Welleman
Content
Meeting 1
 Meeting 2
 Meeting 3

Ir J.W. Welleman
Work and Energy
Castigliano
Potential Energy
Work and Energy methods
2
Lecture 1

Essentials
– Work, virtual work, theorem of Betti and Maxwell
– Deformation or Strain Energy

Work methods and solving techniques
–
–
–
–
Virtual work
Strain Energy versus Work
Work method with unity load
Rayleigh
Ir J.W. Welleman
Work and Energy methods
3
Work
uF
F
u
Ir J.W. Welleman
A  F  uF
Work and Energy methods
4
Deformation or Strain Energy
F=0
force
F
u
u
unloaded
situation
loaded
situation
spring characteristics
EV   k  u
1
2
Ir J.W. Welleman
2
Work and Energy methods
5
Virtual Work : Particle
For a kinematical admissible
displacement Virtual Work is
generated by the forces
y
x
z
A  ux  Fx  uy  Fy  uz  Fz
Particle
Equilibrium conditions of a
particle in 3D
Equilibrium : Virtual Work is zero
Ir J.W. Welleman
Work and Energy methods
6
VW : Rigid Body (in x-y plane)

Same approach, with additional rotational
degree of freedom (see CM1, chapter 15)
 A   ux   Fxi   uy  Fyi     (Tzi )
i
i
i
In plane equilibirum conditions
for a rigid body
Equilibirum : Virtual Work is zero
Ir J.W. Welleman
Work and Energy methods
7
MECHANISMS
Interactionindeterminate
Forces (at the
Kinematically
interface) do not generate Work !
 Possibilities for mechanisms ?

Hinge, N, V no M
Shear force hinge, N, M no V
Telescope, V, M no N
Ir J.W. Welleman
Work and Energy methods
8
RESULT

For mechanisms holds:
The total amount of virtual work is
generated only by external forces
Ir J.W. Welleman
Work and Energy methods
9
MECHANISMS ?????
Not a sensible structure
 Correct, but …….

work = 0
=
M
Ir J.W. Welleman
M
Work and Energy methods
only M generates
work !
10
With Loading …....

Total (virtual) work is zero !
F
=
M
M
u
F
F
M
M
total work = 0 !
results in value of M
Ir J.W. Welleman
Work and Energy methods
11
Example : M at the position of F
 A  F   uF 1M 1  1  M   2  0
F M   0
a b
l
ab 
z-axis
A  FaM
 uFM
b
1 
u
ab
u
a
2 
a
M 
Ir J.W. Welleman
b
0
u
b
u
F
M
u
x-axis
M
Work and Energy methods
12
Standard Approach




Generate Virtual Work for the chosen generalised
force (forces or moments)
Only possible if the constrained degree of freedom
which belongs to the generalised force is released
and is given a virtual displacement or virtual
rotation
In case of a statically determinate structure this
approach will result in a mechanism. Only the
external load and the requested generalised force will
generate Virtual Work (no structural deformation).
The total amount of Virtual Work is zero.
Ir J.W. Welleman
Work and Energy methods
13
Example : AV
F
AV
z-as
l
a
b
 A  AV   u  F 
F
u
AV
AV 
u
l
Ir J.W. Welleman
u b
l
0
F b
l
b
Work and Energy methods
14
“TASTE” FOR BEAMS




Support Reactions
Shear force
Moment
Normal force
- remove the support
- shear hinge
- hinge
- telescope
V
u
u
V
u

Ir J.W. Welleman
Work and Energy methods
15
Example : Truss
Horizontal displacement =
Force in bar DE ?
Rotation  Vertical Distance to
Step 1: release
elongation
Rotational
Centrethe
(RC)
degree of freedom of this bar

w
1
with a u
telescope
mechanism


a

D
4w
4a work
and generate virtual
with the normal
 wforce N
uE 
 a  12  w
Step 2: Determine
2a the virtual
Work
Compute the amount of
Step 3 : Solve N
Work…
Ir J.W. Welleman
Work and Energy methods
16
Assignment : Virtual Work
moment at the support and support reaction at the roller
50 kN
5 kN/m
x-axis
2,5 m
3,5 m
z-axis
Ir J.W. Welleman
Work and Energy methods
17
Work and the reciprocal theorem
1 : first Fa than Fb
A  12 Fa  uaa 
Fb
Fa
A
B
uba
uaa
ubb
uab
1
2
2 : first Fb than Fa
A  12 Fb  ubb 
1
2
Ir J.W. Welleman
Fb  ubb  Fa  uab
Work and Energy methods
Fa  uaa  Fb  uba
18
Work must be the same

Order of loading is not important

This results in:
Fa uab  Fbuba
theorem of BETTI
Ir J.W. Welleman
Work and Energy methods
19
Reciprocal theorem of Maxwell
displacement = influencefactor x force
uaa  caa Fa
uab  cab Fb
uba  cba Fa
ubb  cbb Fb
Rewrite BETTI in to:
Fa uab  Fbuba
Ir J.W. Welleman
Fa cab Fb  Fb cba Fa
cab  cba
Work and Energy methods
20
Result :
Betti – Maxwell reciprocal theorem
ua  uaa  uab  caa Fa  cab Fb
ub  uba  ubb  cba Fa  cbb Fb
ua  caa
 
ub   cab
Ir J.W. Welleman
cab   Fa 
 

cbb   Fb 
Work and Energy methods
21
Strain Energy
Extension (tension or compression)
 Shear
 Torsion
 Bending
 Normal- and shear stresses

Ir J.W. Welleman
Work and Energy methods
22
Extension
dx
force
N
N
work
N
dx

strain
d
2
N
E 
2 EA
*
C
Ir J.W. Welleman
oppervlak
E  EA
*
V
Work and Energy methods
1
2
2
23
Strain Energy


In terms of the
generalised stresses
EC
In terms of the
generalised displacements EV
See lecture notes for standard cases
Ir J.W. Welleman
Work and Energy methods
24
SUMMARY
Ir J.W. Welleman
Work and Energy methods
25
Work methods

Work by external loads is stored in the
deformable elements as strain energy
(Clapeyron)

Aext = EV
Ir J.W. Welleman
Work and Energy methods
26
Example 2 :
Work and Energy
F
EI
A
B
x-axis
wmax
z-axis
Ir J.W. Welleman
0,5 l
0,5 l
Work and Energy methods
27
Work = Energy ?
l
Aext  12 Fwmax
l
2
M
E v   E v* dx  
dx
2 EI
0
0

Unknown is wmax
 Determine the M-distribution and the strain
energy (MAPLE)
 Work = Strain Energy (Clapeyron)
Ir J.W. Welleman
Work and Energy methods
28
Moment Distribution ?
Basic mechanics (statics) ?
 Take half of the model due to symmetry

0  x  12 l 
M ( x)  12 F  x
1l
2
Ev  2 
0
 12 Fx
2
1l
2
2
F
F
2
dx 
x
dx 

2 EI
4 EI 0
4 EI
Ir J.W. Welleman
2
Work and Energy methods
1
3
x3
1l
2
0
F 2l 3

96EI
29
Solution
Aext  EV

2 3
1
2
Fwmax
F l

96 EI
3
wmax
Ir J.W. Welleman
Fl

48 EI
Work and Energy methods
30
Distributed
load ?
q
A
w(x)
EI
B
l

Work = displacement x load (how?)

Strain Energy from M-line (ok)

Average displacement or
something like that ????
Ir J.W. Welleman
Work and Energy methods
31
Alternative Approach:
Work Method with Unity Load
Add a unitiy load at the position for
which the displacement is asked for.
 Displacement w and M-line M(x) due to
actual loading
 Displacement w en M-line m(x) due to
unity load

Ir J.W. Welleman
Work and Energy methods
32
1,0 kN
Approach




EI
m(x)
l
Add Unity Load (0 .. 1,0)
Add actual Load (0 .. F)
F
EI
Total Work ?
Strain Energy ?
M(x)
l
Aext  12 1, 0   w  12  F  w  1, 0  w
l
Ev  
0
 M ( x )  m( x ) 
2 EI
2
dx 
m( x ) 2
2 m( x )  M ( x )
M ( x) 2
0 2EI dx  0 2EI dx  0 2EI dx
l
Ir J.W. Welleman
l
Work and Energy methods
l
33
Result
m( x )  M ( x )
w
dx
EI
0
l
Integral is product of well known
functions. In the “good old times” a
standard table was used. Now use MAPLE
Ir J.W. Welleman
Work and Energy methods
34
Work Method with Unity Load
Ir J.W. Welleman
Work and Energy methods
35
Example with distributed load
1,0 kN
q
EI
0,5 l
Ir J.W. Welleman
wmax
0,5 l
Work and Energy methods
36
Approach
Determine M(x) due to load q
(see example 1)
 Determine m(x) due to unity load
(notes : example 2)

Elaborate…
Ir J.W. Welleman
Work and Energy methods
37
Application Work & Energy
Buckling
EI, EA
F
l
u
F
just before
buckling only
compression
F
uF
after buckling
compression and
bending
CONCLUSION :
Increase in Work during buckling is stored as strain energy
by bending only. (Compression is the same)
Ir J.W. Welleman
Work and Energy methods
38
Buckling (transition)
(almost) Constant Normal Force
 Deformation by compression remains
constant
THUS
 Work done by normal force and
additional displacement is stored as
strain energy by bending only

Ir J.W. Welleman
Work and Energy methods
39
Additional displacement
dx
w
duF
z, w
x, u
dx 2  dw2
dx
w
dw
2
2


 dw  
1  dw 
du F  1  1    dx  2   dx
dx  
dx 





Taylor approximation
Ir J.W. Welleman
Work and Energy methods
40
Clapeyron : A = Ev
2
 dw 

 dx
 dx 
l
uF  
1
2
0
A  F  
l
Ev   EI dx  
1
2
2
0
Fk 

0
2
d w
EI  2  dx
 dx 
2
l
1  dw 
0 2  dx  dx
2
0
 Fk-Rayleigh
 dw 

 dx
 dx 
1
2
2
d w
EI  2  dx
 dx 
2
2
d w
0 EI  dx 2  dx
 l
2
 dw 
0  dx  dx
l
1
2
Ir J.W. Welleman
1
2
0
l
l
2
l
Work and Energy methods
2
41
Example
w
4 fx (l  x)
l2
F
f
l

Assume a kinematically admissible
displacement field

Elaborate the integrals in the expression
and compute the Buckling Load …
Ir J.W. Welleman
Work and Energy methods
Kinematic boundary
conditions are met
Exact Buckling
load is always
smaller than the
one found with
Rayleigh
(UNSAFE)
42