CEN5515 - Washington University in St. Louis

Download Report

Transcript CEN5515 - Washington University in St. Louis

Lecture Note on Survivability

Impact of Outages 0 Service Outage Impact "Hit"

APS

Trigger Change over of CCS Links

1st Range

50 msec 200 msec May Drop Voiceband Calls

2nd Range

Call Dropping Private Line Disconnect Packet (X.25) Disconnect

3rd Range 4th Range

2 sec 10 sec 5 min Social/ Business Impacts FCC Reportable

6th Range 5th Range

30 min

Market Drivers for Survivability      Customer Relations Competitive Advantage Revenue – Negative - Tariff Rebates – Positive - Premium Services • Business Customers • Medical Institutions • Government Agencies Impact on Operations Minimize Liability

Network Survivability • Availability: 99.999% (5 nines) => less than 5 min downtime per year • Since a network is made up of several components, the only way to reach 5 nines is to add survivability – Survivability = continued services in the presence of failures – Protection switching or restoration: mechanisms used to ensure survivability • Add redundant capacity, detect faults and automatically re-route traffic around the failure • Restoration: related term, but slower time-scale • Protection: fast time-scale: 10s-100s of ms… – implemented in a distributed manner to ensure fast restoration

Failure Types • Types of failure: – Components: links, nodes, channels in WDM, active components, software… – Human error: backhoe fiber cut – Systems: Entire COs can fail due to catastrophic events – Single failure vs multiple concurrent failures • Goal: mean repair time << mean time between failures… • Protection depends upon applications – SONET/SDH: 60 ms (legacy drop calls threshold) • Survivability provided at several layers

Network Survivability Architectures

Network Survivability Architectures Restoration Protection Self-healing Network Re-Configurable Network Protection Switching Mesh Restoration Architectures Linear Protection Architectures Ring Protection Architectures

Network Availability & Survivability Availability is the probability that a system is able to perform its designed functions when called upon to do so.

Availability = Reliability Reliability + Recovery

Quantification of Availability Percent Availability 99% 99.9% 99.99% 99.999% 99.9999% N-Nines 2-Nines 3-Nines 4-Nines 5-Nines 6-Nines Downtime Time Minutes/Year 5,000 Min/Yr 500 Min/Yr 50 Min/Yr 5 Min/Yr .5 Min/Yr

PSTN • Individual elements have an availability of 99.99% • One cut off call in 8000 calls (3 min for average call). Five ineffective calls in every 10,000 calls.

PSTN End-to-End Availability 99.94% NI AN 0.01 %

NI : Network Interface LE : Local Exchange LD : Long Distance AN : Access Network

0.005 % LE Facility Entrance 0.005 % LD 0.02 % Facility Entrance 0.005 % NI 0.005 % LE AN 0.01 %

Service Requirements Vs Network Availability

IP Network Expectations Service

Real Time Interactive (VOIP, Cell Relay ..) Layer 2 & Layer 3 VPN ’ s (FR/Ethernet/AAL5) Internet Service

Delay

L M H

Jitter

L L H Video Services L M

L : Low M : Medium H : High Loss Availability

L L M M H H L H

Measuring Availability: Port Method • Based on Port Count in Network

(Total # of Ports X Sample Period) - (number of impacted port x outage duration) (Total number of Ports x sample period) x 100

• Does not take into account the bandwidth of ports (e.g. OC-192 and 64k are both ports) • Good for dedicated access service because ports are tied to customers.

Port Method Example • 10,000 active access ports Network • Access router with 100 access ports fails for 30 minutes.

– Total Available Port-Hours = 10,000*24 = 240,000 – Total Down Port-Hours = 100*.5 = 50 – Availability for a Single Day = (240000-50/240,000)*100 = 99.979166 %

Bandwidth Method • Based on Amount of Bandwidth available in Network

(Total amount of BW X Sample Period) - (Amount of BW impacted x outage duration) (Total amount of BW in network x sample period) x 100

• Takes into account the bandwidth of ports • Good for core routers

Bandwidth Method Example • Total capacity of network 100 Gigabits/sec • Access Router with 1 Gigabits/sec BW fails for 30 minutes.

– Total BW available in network for a day = 100*24 = 2400 Gigabits/sec – Total BW lost in outage = 1*.5 = 0.5

– Availability for a Single Day = ((2400-0.5)/2,400)*100 = 99.979166 %

Defects Per Million Method • Used in PSTN networks, defined as number of blocked calls per one million calls averaged over one year.

DPM = [ (number of impacted customers x outage duration) (total number of customers x sample period) ] x 10 -6

Defects Per Million Example • 10,000 active access ports Network • Access Router with 100 access ports fails for 30 minutes. – Total Available Port-Hours = 10,000*24 = 240,000 – Total Down Port-Hours = 100*.5 = 50 – Daily DPM = (50/240,000)*1,000,000 = 208

Working and Protect Fibers

Protection Topologies - Linear • Two nodes connected to each other with two or more sets of links

Working Protect Working Protect (1+1) (1:n)

Protection Topologies - Ring • Two or more nodes connected to each other with a ring of links – Line vs. Drop interfaces – East vs. West interfaces

D Working E L W L E W E W W Protect E

Protection Topologies - Mesh • Three or more nodes connected to each other – Can be sparse or complete meshes – Spans may be individually protected with linear protection – Overall edge-to-edge connectivity is protected through multiple paths

Protect Working

Ring Topologies

DCC ADM ADM ADM 2 Fiber Ring Each Line Is Full Duplex DCC ADM ADM ADM 4 Fiber Ring Each Line Is Full Duplex DCC ADM ADM ADM DCC Uni- vs. Bi Directional All Traffic Runs Clockwise, vs Either Way ADM ADM ADM

Automatic Protection Switching (APS)

ADM ADM ADM ADM ADM ADM Line Protection Switching Uses TOH Trunk Application Backup Capacity Is Idle Supports 1:n, where n=1-14 Automatic Protection Switching

Line Or Path BasedRestoration Times ~

50 ms

K1, K2 Bytes Signal Change

Path Protection Switching Uses POH Access Line Applications Duplicate Traffic Sent On Protect 1+1

Protection Switching Terminology • 1+1 architectures - permanent bridge at the source - select at sink • m:n architectures - m entities provide protection for n working entities where m is less than or equal to n – allows unprotected extra traffic – most common - SONET linear 1:1 and 1:n • Coordination Protocol - provides coordination between controllers in source and sink – Required for all m:n architectures – Not required for 1+1 architectures unless they employ bi-directional protection switching

1+1 vs 1:n

Working Protect Working Protect (1+1) (1:n)

TX = Transmitter RX = Receiver

Linear 1+1 APS

BR = Bridge SW = Switch Working TX BR SW TX RX RX Protection Working Protection RX SW RX TX TX BR

Protection Switching • Dedicated vs Shared: working connection assigned dedicated or shared protection bandwidth – 1+1 is dedicated, 1:n is shared • Revertive vs Non-revertive: after failure is fixed, traffic is automatically or manually switched back – Shared protection schemes are usually revertive • Uni-directional or bi-directional protection: – Uni: each direction of traffic is handled independent of the other. Fiber cut => only one direction switched over to protection . Usually done with dedicated protection; no signaling required.

– Bi-directional transmission on fiber (full duplex) => requires bi-directional switching & signaling required

Ring Protection Today: multiple “stacked” rings over DWDM (different  s)

Unidirectional Path Switched Ring (UPSR)

A-B B-A Bridge Path Selection Bridge fiber 1 A-B A B-A Path Selection fiber 2 B D P W C Failure-free State

* One fiber is “working” and the other is “protecting” at all nodes… * Traffic sent simultaneously on working and protect paths… * Protection done at path layer (like 1+1)…

Unidirectional Path Switched Ring (UPSR)

Bridge A-B Path Selection fiber 1 A B-A Path Selection fiber 2 B D Bridge W P C Failure State

UPSR Discussion • Easily handles failures of links, transmitters, receivers or nodes • Simple to implement: no signaling protocol or communication needed between nodes • Drawback: does not spatially re-use the fiber capacity because it is similar to 1+1 linear protection model – No sharing of protection (like m:n model) – BLSRs can support aggregate traffic capacities higher than transmission rate • UPSR is popular in lower-speed local exchange and access networks – No specified limit on number of nodes or ring length of UPSR, only limited by difference in delays of paths

Bidirectional Line Switched Ring (BLSR/2) Working Protection

2-Fiber BLSR B

A  C C  A

A C

A  C C  A

D

Bi-directional Line Switched Ring (BLSR/2) Working Protection Ring Switch

2-Fiber BLSR B

A  C C  A Ring Switch

A C

A  C C  A

D

Bi-directional Line Switched Ring (BLSR/2) Working Protection Node Failure

2-Fiber BLSR B

A  C C  A Ring Switch

A C

A  C C  A Ring Switch

D

Node Failures => “Squelching”

Customer 1 Customer 2 2-Fiber BLSR B

Node Failure

Customer 1

A  C C  A Ring Switch

A C Customer 2

A  C C  A Ring Switch

D

Bi-directional Line Switched Ring (BLSR/4)

4-Fiber BLSR

A  C C  A

Working A Protection B C

A  C C  A

D

Bidirectional Line Switched Ring

4-Fiber BLSR Span Switch B

A  C C  A

Working A Protection D C

A  C C  A

Ring Switch

A  C C  A

A Working

Bidirectional Line Switched Ring

Node Failure 4-Fiber BLSR B Protection D C

A  C C  A

Ring Switch Also Need to Squelch any Misconnected Traffic

BLSR Discussion • BLSR/2 can be thought of as BLSR/4 with protection fibers embedded in the same fiber – One half of the capacity is used for protection purposes in each fiber • Span switching and ring switching is possible only in BLSR, not in UPSR • 1:n and m:n capabilities possible in BLSR • More efficient in protecting distributed traffic patterns due to the sharing • Ring management more complex in BLSR/4 • K1/K2 bytes of SONET overhead is used to accomplish this

Deployment of UPSR and BLSR

Regional Ring (BLSR) Intra-Regional Ring (BLSR) Intra-Regional Ring (BLSR) Access Rings (UPSR)

Mesh Restoration

Central Controller DCS DCS DCS DCS Reconfigurable (or Rerouting) Restoration Architecture DC DCS DC DCS DC DCS DC DCS Self Healing Restoration Architecture DC = Distributed Controller

DCS

Mesh Restoration

Working Path DCS Line or Link Restoration DCS DCS DCS DCS Path Restoration

• • •

Control: Centralized or Distributed Route Calculation: Preplanned or Dynamic Type of Alternate Routing: Line or Path

Mesh Restoration vs Ring/Linear Protection

Attributes Spare Capacity Needed Fiber Counts Restoration Time Software Complexity Protection Against Major Failures Planning/Operations Complexity Linear APS Most Highest <50 ms Least Worst Least Ring PS Moderate Moderate <50 ms Moderate Medium Moderate/least Mesh Restoration Least Moderate 2-10 seconds Most Best Most