Transcript Slide 1
Negative Index/Refraction & Fabrication + Application EE235 2nd presentation May 4th, 2009 Jun Rho Cloaking & Invisible Man Refraction & Snell’s law Snell’s law sin 1 v1 n2 sin 2 v2 n1 Total Internal Reflection n2 c sin n1 1 Negative Index Metamaterials Refractive Index n n1 in2 (e1m1 e 2 m2 ) i (e1m2 e 2 m1 ) where e e1 ie 2 Snell’s “Practical Law Applications” n1 negative m materials e>0 m<0 1 1 SuperLens sin n n p| HyperLens sin n n (p = -1 for LHM) Cloaking 1 2 2 2 1 1 | 2 S e>0 m>0 most dielectrics no natural materials e<0 m<0 m m1 i m2 e<0 m>0 metals , ionic crystals m n1 RHM RHM RHM LHM n2 2 k S n2 k e Superlens: Principle Diffraction limit w/o superlens Diffraction limit w superlens ~ 5 ~ 2 6 X. Zhang et al, Vol. 308, pp 435-441, Nature Materials, 2008 Superlens: Experiment At wavelength = 365nm Resolution achieved about 60-90nm N. Fang et al, Vol. 308, pp1534-5376, Science, 2005 Superlens: Fabrication 1. Cr deposition on a quartz substrate 2. Focused Ion Beam (FIB) patterning 3. Planarization 4. PMMA spacer layer deposition 5. Ag layer deposition 6. Near field photolithography N. Fang et al, Vol. 308, pp1534-5376, Science, 2005 Hyperlens: Principle |H| 0.04 Wavelength: 405nm At wavelength = 365nm 0.02 Diffraction limit w/o hyperlens 1.22 1.22 365nm 155nm 2 NA 2 1.44 45pairs 10nmAg/10nm Ta2O5(R1:100nm,R2:1000nm) Object: 50nm separation, 20nm opening 0 Diffraction limit w/ hyperlens 1.22 1.22 365nm 120nm NA M 1.5 2.5 Theoretically, diffraction limit is overcame. (120m < 150nm) Images after hyperlens 0.06 0.04 130nm 140nm 150nm 160nm 0.02 Experimental resolution limit? 0 -1500 -1000 -500 0 d (nm) 500 1000 1500 22 pairs (R1: 400nm, R2: 1940nm) Hyperlens: Experiment J. Liu et all, Vol. 315, p 1686, Science, 2007 130nm Hyperlens: Fabrication 1. Cr deposition on the quartz surface 2. Focused Ion Beam (FIB) patterning. 3. HF (BOE) wet etching 4. Remove mask layer 5. Multilayer deposition of Ag and Al2O3 by E-beam evaporator. Finally, the last Cr layer deposition is followed Superlens & Hyperlens Conventional lens Superlens (Near field) Superlens (Far field) X. Zhang et al, Vol. 308, pp 435-441, Nature Materials, 2008 Hyperlens Metamaterials: Principle & Fab. Negative Permeability (µ) k H k E Negative Permittivity (ε) Negative Index (LHM) H E Wire Grid Polarizer RLC Circuit S. Zhang, Opt. Exp., 2005 S. Zhang, PRL, 2005 J. Valentine et al, Nature, 2008 Cloaking: Fab. & Experiment J. Valentine et al, pp 1-5, Nature, 2008 Future steps Superlens Hyperlens More applications Overcoming diffraction limit in visible wavelength Application to Bio-Engineering Cloaking Bulk-metamaterials characteristics Manufacturing Issues Questions?