Transcript Document
Copyright © 2011 Pearson Education, Inc. Slide 11.5-1 Chapter 11: Further Topics in Algebra 11.1Sequences and Series 11.2Arithmetic Sequences and Series 11.3Geometric Sequences and Series 11.4Counting Theory 11.5The Binomial Theorem 11.6Mathematical Induction 11.7Probability Copyright © 2011 Pearson Education, Inc. Slide 11.5-2 11.5 The Binomial Theorem The binomial expansions ( x y )0 1 ( x y )1 x y ( x y ) 2 x 2 2 xy y 2 ( x y )3 x 3 3 x 2 y 3xy 2 y 3 ( x y ) 4 x 4 4 x 3 y 6 x 2 y 2 4 xy 3 y 4 ( x y )5 x 5 5 x 4 y 10 x 3 y 2 10 x 2 y 3 5 xy 4 y 5 reveal a pattern. Copyright © 2011 Pearson Education, Inc. Slide 11.5-3 11.5 A Binomial Expansion Pattern • The expansion of (x + y)n begins with x n and ends with y n . • The variables in the terms after x n follow the pattern x n-1y , x n-2y2 , x n-3y3 and so on to y n . With each term the exponent on x decreases by 1 and the exponent on y increases by 1. • In each term, the sum of the exponents on x and y is always n. • The coefficients of the expansion follow Pascal’s triangle. Copyright © 2011 Pearson Education, Inc. Slide 11.5-4 11.5 Pascal’s Triangle Pascal’s Triangle Row 0 1 1 1 1 1 1 Copyright © 2011 Pearson Education, Inc. 2 3 4 5 1 1 3 6 10 1 2 1 4 10 3 1 5 4 1 5 Slide 11.5-5 11.5 Pascal’s Triangle • Each row of the triangle begins with a 1 and ends with a 1. • Each number in the triangle that is not a 1 is the sum of the two numbers directly above it (one to the right and one to the left.) • Numbering the rows of the triangle 0, 1, 2, … starting at the top, the numbers in row n are the coefficients of x n, x n-1y , x n-2y2 , x n-3y3, … y n in the expansion of (x + y)n. Copyright © 2011 Pearson Education, Inc. Slide 11.5-6 11.5 Binomial Coefficients Binomial Coefficient For nonnegative integers n and r, with r < n, n n! r r !(n r )! Copyright © 2011 Pearson Education, Inc. Slide 11.5-7 11.5 Binomial Coefficients n • The symbols n Cr and for the binomial r coefficients are read “n choose r” n • The values of are the values in the nth row r 3 of Pascal’s triangle. So is the first number 0 3 in the third row and is the third. 2 Copyright © 2011 Pearson Education, Inc. Slide 11.5-8 11.5 Evaluating Binomial Coefficients 6 Example Evaluate (a) 2 8 (b) 0 Solution 6 6! 6! 6 5 4 3 2 1 15 (a) 2 2!(6 2)! 2!4! 2 1 4 3 2 1 8 8! 8! 8! 1 (b) 0 0!(8 0)! 0!8! 1 8! Copyright © 2011 Pearson Education, Inc. Slide 11.5-9 11.5 The Binomial Theorem Binomial Theorem For any positive integer n, n n 1 n n 2 2 n n 3 3 ( x y) x x y x y x y 1 2 3 n nr r n n 1 n ... x y ... xy y r n 1 n Copyright © 2011 Pearson Education, Inc. n Slide 11.5-10 11.5 Applying the Binomial Theorem Example Write the binomial expansion of ( x y )9 . Solution Use the binomial theorem 9 8 9 7 2 9 6 3 ( x y) x x y x y x y 1 2 3 9 5 4 9 4 5 9 3 6 9 2 7 x y x y x y x y 4 5 6 7 9 8 xy y 9 8 9 Copyright © 2011 Pearson Education, Inc. 9 Slide 11.5-11 11.5 Applying the Binomial Theorem 9! 8 9! 7 2 9! 6 3 ( x y) x x y x y x y 1!8! 2!7! 3!6! 9! 5 4 9! 4 5 9! 3 6 9! 2 7 x y x y x y x y 4!5! 5!4! 6!3! 7!2! 9! 8 xy y 9 8!1! x9 9 x8 y 36 x 7 y 2 84 x 6 y 3 126 x 5 y 4 126 x 4 y 5 9 9 84 x3 y 6 36 x 2 y 7 9 xy 8 y 9 Copyright © 2011 Pearson Education, Inc. Slide 11.5-12 11.5 Applying the Binomial Theorem 5 b Example Expand a . 2 Solution Use the binomial theorem with b xa , y and n = 5, 2 2 5 5 4 b 3 b b 5 a a 1a 2 a 2 2 2 5 3 4 5 5 5 2 b b b a a 3 2 4 2 2 Copyright © 2011 Pearson Education, Inc. Slide 11.5-13 11.5 Applying the Binomial Theorem Solution 5 b 5 4 b 3 b a a 5a 10a 2 2 2 3 4 2 5 b b b 10a 5a 2 2 2 5 4 5 3 2 5 2 3 5 4 1 5 5 a a b a b a b ab b 2 2 4 16 32 2 Copyright © 2011 Pearson Education, Inc. Slide 11.5-14 11.5 rth Term of a Binomial Expansion rth Term of the Binomial Expansion The rth term of the binomial expansion of (x + y)n, where n > r – 1, is n n( r 1) r 1 y . x r 1 Copyright © 2011 Pearson Education, Inc. Slide 11.5-15 11.5 Finding a Specific Term of a Binomial Expansion 10 ( a 2 b ) Example Find the fourth term of . Solution Using n = 10, r = 4, x = a, y = 2b in the formula, we find the fourth term is 10 7 3 7 3 7 3 a (2b) 120a 8b 960a b . 3 Copyright © 2011 Pearson Education, Inc. Slide 11.5-16