Transcript Document
ME 381R Lecture 6: Lattice Specific Heat Dr. Li Shi Department of Mechanical Engineering The University of Texas at Austin Austin, TX 78712 www.me.utexas.edu/~lishi [email protected] •Reading: 1-3-2 in Tien et al •Reference: Ch5 in Kittel Density of Phonon States in 1D A linear chain of N=10 atoms with two ends jointed a Only N wavevectors (K) are allowed (one per mobile atom): K= -8p/L -6p/L -4p/L -2p/L 0 2p/L 4p/L 6p/L 8p/L p/a=Np/L Only 1 K state lies within a DK interval of 2p/L # of states between K and K + dK is: (L/2p)dK # of K-vibrational modes between w and w+dw : D(w)dw D(w): density of states L dw 2p dw / dK 2 Density of States in 3D 2p 4p Np K x , K y , K z 0; ; ;...; L L L N3: # of atoms Kz Ky Kx 2p/L D(w ) VK 2 2p 2 1 ; dw / dK V L3 3 Lattice Specific Heat El p 1 n w K , p 2 w K , p K p: polarization(LA,TA, LO, TO) K: wave vector 1 4pK 2 dK El n wK , p wK , p 2 p 2p L3 Dispersion Relation: K g w Energy Density: D(w ) VK 2 2p 2 1 dw / dK 1 l n w wDw dw / V 2 p Lattice Specific Heat: d l Cl dT p d n dT wDw dw 4 Debye Approximation: w vs K 2 2 Debye Density of Dw V g w dg V w States 2p 2 dw 2p 2vs3 Number of Atoms: N Debye cut-off Wave Vector Debye Cut-off Freq. 4 Frequency, w Debye Model w vs K 3 p K D 3 2p L 3 K D 6p 2 1 3 Wave vector, K p/a 0 Debye Temperature [K] w D vs K D w D vs 6p Debye Temperature D kB kB 2 1 3 C(dimnd) Si Ge B Al 1860 625 360 1250 394 Ga NaF NaCl NaBr NaI 240 492 321 224 164 5 Lattice Specific Heat Energy Density l p Specific Heat wD 0 D T 3 1 w x dx 4 9k B n w d w 3 x T 2 2p 2vs3 D 0 e 1 w x k BT 3 3 D T T Cl 9k B D 0 e x x 4 dx 2 e x 1 10 7 C 3 kB 4.7 10 6 J m3 K When T << D, l T 4 , Cl T 3 3 Specific Heat, C (J/m -K) 10 6 Diam ond 10 5 10 4 10 3 10 2 10 1 1 10 C T3 Classical Regime Quantum Regime D 1860 K 10 2 10 3 Te m pe r atur e , T (K) 10 4 6