Transcript Slide 1

PhD Defense
Local Reverse Time Migration
with VSP Green’s Functions
Xiang Xiao
UTAM, Univ. of Utah
May 1, 2008
99 pages
Outline
•
•
•
•
•
Introduction and overview
SSP VSP  SWP interferometric
transform
Local reverse time migration: horizontal
reflector imaging
Local reverse time migration: salt flank
imaging with transmitted P-to-S waves
Summary
2
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Outline
•
•
•
•
•
Introduction and overview
SSP VSP  SWP interferometric
transform
Local reverse time migration: horizontal
reflector imaging
Local reverse time migration: salt flank
imaging with transmitted P-to-S waves
Summary
3
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Data
Time
Depth
Model
Offset
r(x)
Offset
Forward modelling
D(g|s)
Migration Image
Inverse
Migration
m(x)
Low subsalt resolution,
Defocusing!
Overview
SSPVSP
Local RTM
Local RTM PS
4
Summary
Subsalt Imaging
Modelbased
m(x) ~
~
Modelbased
G(x|s)
s
*
G(x|g)* D(g|s)dg
g
ds
s
D(g|s)
g
G(x|s)
G(x|g)
x
5
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Subsalt Imaging
Forward
direct
m(x) ~
~
G(x|s)
s
Backward
reflection
*
G(x|g)* D(g|s)dg
g
s
Errors in the
overburden
and salt body
velocity model
D(g|s)
g
G(x|s)
G(x|g)
ds
x
Defocusing
6
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Interferometric Imaging
Databased
m(x) ~
~
Modelbased
G(x|s)
s
*
G(x|g)* D(g|s)dg
g
g
ds
s
G(x|s)
G(x|g)
x
7
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Local Reverse Time Migration
Backward Direct wave
G(x|s)=
G(x|g’)* D(g’|s)dg’
g’
Local VSP
Green’s function
g
s
G(x|s)
G(x|g)
x
g’
8
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Local Reverse Time Migration
Backward
approx
m(x) ~
~
G(x|s)
s
Backward
reflection
*
G(x|g)* D(g|s)dg
g
g
ds
s
G(x|s)
G(x|g)
x
g’
9
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Outline
•
•
•
•
•
Introduction and overview
SSP VSP  SWP interferometric
transform
Local reverse time migration: horizontal
reflector imaging
Local reverse time migration: salt flank
imaging by transmitted P-to-S waves
Summary
10
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Outline
•
SSP VSP  SWP interferometric
transform
–
–
–
Motivation
Theory
Numerical Tests
•
•
–
SEG/EAGE salt model
Double datuming
Conclusions
11
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
I. Why we need more VSP?
SSP
Seabed
Salt
Target
VSP
Surface related statics
•Twice
Once
Overburden velocity error
•Twice
Raypath
Once
•Longer
Attenuation
•More
Frequency
Shorter
•Lower
Less
Higher
Resolution
•Lower
Higher
12
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
How to get more VSP?
SSP
VSP
x
B
RVSP
x
B
S2
x
B
S2
A
S2
A
S1
A
S1
RVSP
S1
VSP
G(B|A) ~~
SSP
G(A|x)* G(B|x) dx
S2
13
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
3D Application
3D SSP
3D VSP
Low fold
Naturally datuming !
High fold !
SSP + VSP RVSP !
3D RVSP
SSPVSP
Motivation
Theory
14
Numerical Tests
Conclusions
Receiver coverage
Shot coverage
S
Seabed
Salt
SSP/RVSP aperture
Target
VSP aperture
X
g
15
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
Use it, or lost it…
High folds !
SSP + VSP RVSP !
3D RVSP
Well log
SSP, VSP
Better Geologic interpretation !
Salt
Better image
under the salt !
16
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
What is the benefit ?
SSP + VSP  RVSP
– Sources are closer to the target;
– Higher fold virtual RVSP data are obtained;
– No velocity model is needed;
– Multi-arrival are considered;
Salt
17
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
How to skip overburden?
VSP
VSP
s
Virtual Source Gather
s
g’
s
g’
g
g’
g
g
No velocity model is needed !
SWP
VSP
G(g|g’) ~~
VSP
G(g’|s)* G(g|s) dx
S
18
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
Application
Application of VSPSWP transform:
Virtual Source Gather
Salt flank imaging
s
P and S wave checkshot
Sediment imaging
g’
Multiple/teleseismic imaging
g
4D Reservoir monitoring
Shear wave splitting and crack orientation
Seismic while drilling
……
19
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
Outline
•
SSP VSP  SWP interferometric
transform
–
–
–
Motivation
Theory
Numerical Tests
•
•
–
SEG/EAGE model
Double datuming
Conclusions
20
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
SEG/EAGE Salt Model
P-wave velocity model
Depth (m)
0
Velocity (m/s)
4500
3600
1500
-7850
SSPVSP
Offset (m)
Motivation
Theory
Numerical Tests
7850
Conclusions
21
SSP Data Geometry…
SSP
P-wave velocity model
Depth (m)
0
Velocity (m/s)
4500
3600
1500
-7850
SSPVSP
Offset (m)
Motivation
Theory
Numerical Tests
7850
Conclusions
22
Data
Synthetic SSP CSG
Time (s)
0
6
-2000
Offset (m)
2000
23
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
VSP Geometry…
P-wave velocity model
Depth (m)
0
Velocity (m/s)
4500
3600
1500
-7850
Offset (m)
7850
24
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
Data
0
0
Time (s)
Synthetic VSP CRG
Time (s)
Synthetic SSP CSG
6
6
-7850
Offset (m)
7850
-7850
Offset (m)
7850
25
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
Synthetic RVSP CSG
0
Time (s)
1.4 km
Comparison
6
Redatumed RVSP
0
Traces comparisons
2
Time (s)
Time (s)
Amplitude
Zoom area
6
6
-7850
26
Offset (m)
7850
Zoom View of Traces
Normalized Amplitude
Direct waves are cut
Redatumed RVSP trace
3
poor data folds
Time (s)
5.5
27
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
Another Datuming Results
P-wave velocity model
Depth (m)
0
Velocity (m/s)
4500
3600
1500
-7850
Offset (m)
7850
28
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
Synthetic RVSP CSG
0
Time (s)
2.4 km
Comparison
6
Redatumed RVSP
0
Time (s)
Amplitude
Traces comparisons
2
6
-2000
Time (s)
6
29
Offset (m)
2000
Zoom view
Normalized Amplitude
Direct waves are cut
Redatumed RVSP trace
2.5
poor data folds
6
Time (s)
30
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
SEG/EAGE Salt Model
P-wave velocity model
Depth (m)
0
Velocity (m/s)
4500
3600
1500
-7850
SSPVSP
Offset (m)
Motivation
Theory
Numerical Tests
7850
Conclusions
31
Shot 320 SSP primary WEM 20 Hz
Depth (km)
1.5
3.5
Shot 320 RVSP WEM 20 Hz
Depth (km)
1.5
32
3.5
-4
Offset (km)
4
SEG/EAGE salt model
33 shots SSP WEM 20 Hz
33shots VSP WEM 20 Hz
33 RVSP+VSP WEM 20 Hz
Depth (km)
0
3.6
Depth (km)
0
33
3.6
-4
Offset (km)
4
-4
Offset (km)
4
SSPVSPSWP Transform
s
g
s
s’
s’
s’
g
g
s’
g
g’
g’
s’
g’
34
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
645 shots SSP WEM
1% error in migration model
2% error in migration model
3% error in migration model
Depth (km)
0
3.6
Depth (km)
0
35
3.6
-8
Offset (km)
8
-8
Offset (km)
8
33 shots VSP WEM
1% error in migration model
2% error in migration model
3% error in migration model
Depth (km)
0
3.6
Depth (km)
0
36
3.6
-8
Offset (km)
8
-8
Offset (km)
8
645 shots SSP primary WEM 20 Hz
Depth (km)
0
3.5
Shot 320 BSSP WEM 20 Hz
Depth (km)
1.5
37
3.5
-8
Offset (km)
8
645 shots SSP primary WEM 20 Hz
Depth (km)
0
3.5
Shot 320 BSSP WEM 20 Hz
Depth (km)
1.5
38
3.5
-8
Offset (km)
8
39
Conclusions
• Natural datuming, no velocity model is needed !
• Higher fold virtual VSP data are obtained !
• Source are closer to the target, less approximation.
• Better resolution.
40
SSPVSP
Motivation
Theory
Numerical Tests
Conclusions
Outline
•
•
•
•
•
Introduction and overview
SSP VSP  SWP interferometric
transform
Local reverse time migration: horizontal
reflector imaging
Local reverse time migration: salt flank
imaging with transmitted P-to-S waves
Summary
41
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Outline
•
Local reverse time migration: horizontal
reflector imaging
–
–
–
Motivation
Theory
Numerical Tests
•
•
–
Sigsbee VSP Data Set
GOM VSP Data Set
Conclusions
42
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
VSP Forward Modeling
s
VSP data
g
D(g|s)
x
43
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Reverse Time Migration
s
VSP data
g
D(g|s)
x
44
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Reverse Time Migration
Forward
direct
m(x) ~
~
G(x|s)
Backward data
*
s
G(x|g)* D(g|s)dg
g
G(x|g)
ds
s
G(x|s)
g
Backward
D(g|s)
Forward
direct
x
45
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Reverse Time Migration (RTM)
Forward direct:
1) Salt velocity model is required, but hard to build.
2) Errors due to imperfect velocity models.
3) Need to estimate statics, anisotropy, etc.
G(x|g)
s
G(x|s)
g
Backward
D(g,s)
Forward
direct
x
46
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
VSPSWP Interferometry
s
g
x
Migrate virtual
source gather D(g|g’)
g’
Limitations
1) s and x are at different sides
of the well
2) Image near vertical structures
47
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Outline
•
Local reverse time migration: horizontal
reflector imaging
–
–
–
Motivation
Theory
Numerical Tests
•
•
–
Sigsbee VSP Data Set
GOM VSP Data Set
Conclusions
48
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Key Idea of Local RTM
(a) VSP data: P(g|s)=T(g|s)+R(g|s)
s
g
Reflection R(g|s)
x
Transmission T(g|s)
49
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Key Idea of Local RTM
(a) VSP data: P(g|s)=T(g|s)+R(g|s)
s
g
(b) Backward
reflection
R(x|s)=
s
R(g|s)
(c) Backward
transmission
x
T(g|s)
T(x|s)=
G(x|g)*R(g|s)
g
g
s
g
R(g|s)
G(x|g)*T(g|s)
Local VSP
Green’s function
g
x
x
T(g|s)
(d) Crosscorrelation
g
m(x)=
R(x|s)*T(x|s)
s
R(g|s)
x
50
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Deconvolution Imaging Condition
(d1) Crosscorrelation imaging condition
m(x)=
R(x|s)*T(x|s)
s
(d2) Deconvolution imaging condition
m(x)=
R(x|s)*T(x|s)
T(x|s)*T(x|s)
s
s
g
R(g|s)
x
51
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Benefits
• Target oriented!
– Only a local velocity model near the well is
needed.
– Salt and overburden is avoided.
– Fast and easy to perform.
• Source statics are automatically
accounted for.
• Immune to salt-related interbed crosstalk.
52
Local RTM
Motivation
Theory
Numerical Tests
Summary
Outline
•
Local reverse time migration: horizontal
reflector imaging
–
–
–
Motivation
Theory
Numerical Tests
•
•
–
Sigsbee VSP Data Set
GOM VSP Data Set
Conclusions
53
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Sigsbee P-wave Velocity Model
m/s
0
4500
Depth (km)
279 shots
150 receivers
1500
9.2
Offset (km)
-12.5
12.5
54
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Local Reverse Time Migration Results
Migration image
True model
4.6
(2)
Depth (km)
d
(1)
f
(1) specular zone
(2) diffraction zone
(3) unreliable zone
d
(3)
f = fault
9.2
-3
Local RTM
Motivation
Offset (km)
Theory
Numerical Tests
3
d = diffractor
55
Conclusions
Outline
•
Local reverse time migration: horizontal
reflector imaging
–
–
–
Motivation
Theory
Numerical Tests
•
•
–
Sigsbee VSP Data Set
GOM VSP Data Set
Conclusions
56
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
GOM VSP Well and Source Location
Source @150 m offset
@600 m offset
@1500 m offset
Depth (m)
0
2800 m
Salt
82
receivers
4878
3200 m
Offset (m)
0
1829
57
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Velocity Profile
S Wave
P Wave
0
Depth (m)
Incorrect
velocity model
P-to-S ratio = 2.7
2800 m
Salt
P-to-S ratio = 1.6
3200 m
4500
0
Velocity (m/s)
5000
0
Velocity (m/s)
5000
58
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Z-Component VSP Data
2652
Reflected P
Depth (m)
Salt
Reverberations
Direct P
3887
1.2
3.0
Traveltime (s)
59
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
2652
X-Component VSP Data
Reflected P
Depth (m)
Salt
Direct S
Reverberations
Direct P
3887
1.2
3.0
Traveltime (s)
60
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Local Reverse Time Migration Result
3.3
39
receivers
Depth (km)
(2)
(1)
(3)
3.9
reflectivity
0
Offset (m)
100
(1) specular zone, (2) diffraction zone, (3) unreliable zone
61
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
150 m offset
Without
deconvolution
With
deconvolution
Depth (km)
3.3
3.9
0
Offset (m)
100
0
Offset (m)
100
62
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
600 m offset
Without
deconvolution
With
deconvolution
Depth (km)
3.3
4.4
0
Offset (m)
600
0
Offset (m)
600
63
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
1500 m offset
Without
deconvolution
With
deconvolution
Depth (km)
3.3
4.4
0
Offset (m)
600
0
Offset (m)
600
64
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Conclusions
• Subsalt reflectors are accurately imaged
near the well with subsalt velocity model
only.
• Diffractors are also imaged.
• Illuminates horizontal subsalt
reflectors around a vertical well.
• GOM local RTM image agrees with the
well reflectivity.
• Deconvolution imaging condition helps.
65
Local RTM
Motivation
Theory
Numerical Tests
Conclusions
Outline
•
•
•
•
•
Introduction and overview
SSP VSP  SWP interferometric
transform
Local reverse time migration: horizontal
reflector imaging
Local reverse time migration: salt flank
imaging with transmitted P-to-S waves
Summary
66
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Outline
•
Local reverse time migration: salt flank
imaging by transmitted P-to-S waves
–
–
–
Motivation
Theory
Numerical Tests
•
•
–
Schlumberger VSP Data Set
GOM VSP Data Set
Conclusions
67
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Standard P-to-S Migration
Forward
source P
m(x) ~
~
G(x|s)
Backward data S
*
s
G(x|g’)*D(g’|s)dg’
ds
g’
s
P
Converted
wave VSP
D(g|s)
x
S
Salt and overburden
velocity model is needed
g’
68
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Interferometric P-to-S Migration
Virtual source gather
D(g|s) * D(g’|s) ds
D(g|g’) ~~
s
G(x|g) * G(x|g’) * D(g|g’) dg’dg
m(x) ~
~
g’ g
s
P
P
g
x
S
g’
69
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Kirchhoff P-to-S Migration
m(x) ~
~
e-iwtsx
e-iwtxg’ D(g’|s)dg’ ds
s
g’
s
P
Converted
wave VSP
D(g|s)
P
x
g
S
g’
70
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Reduce Time Migration
m(x) ~
~
e-iw(tsx+terror)
s
pick
e-iwtxg’ D(g’|s)dg’ ds
g’
pick
t error =( t sx+ t xg’ )- ( tsx +
pick
pick
~( t sx+ t xg )- ( tsx +
txg’ )
txg )
s
P
Converted
wave VSP
D(g|s)
P
x
g
S
g
71
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Outline
•
Local reverse time migration: salt flank
imaging by transmitted P-to-S waves
–
–
–
Motivation
Theory
Numerical Tests
•
•
–
Schlumberger VSP Data Set
GOM VSP Data Set
Conclusions
72
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Local Reverse Time Migration Theory
Backward P
Backward S
*
m(x) ~
~
G(x|g’)* D(g’,s) dg’
s g’
G(x|g)* D(g,s)dg ds
g
s
P
P
g
x
S
g’
73
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Outline
•
Local reverse time migration: salt flank
imaging by transmitted P-to-S waves
–
–
–
Motivation
Theory
Numerical Tests
•
•
–
Schlumberger VSP Data Set
GOM VSP Data Set
Conclusions
74
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Schlumberger 2D Isotropic Elastic Model
0
Depth (km)
291 shots
287 receivers
10
-12
0
Offset (km)
12
75
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Aperture by Ray Tracing
(a) Ray tracing direct P
(b) PSS events
Depth (km)
0
10
(d) Pp events
(c) PPS events
Depth (km)
0
10
-12
Local RTM PS
0
Offset (km)
Motivation
12
Theory
-12
Numerical Tests
0
Offset (km)
Summary
12
76
Two-component VSP Synthetic Data Set
VSP CSG X-component
Depth (km)
4
8
VSP CSG Z-component
Depth (km)
4
PSS
Direct P
PPS
8
0
Time (s)
8
77
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
(a) P-wave submodel
km/s
km/s
4.5
2.5
2.0
1.0
Depth (km)
6.0
(b) S-wave submodel
8.7
(c) P background model
(d) S background model km/s
4.5
2.5
2.0
78
Depth (km)
6.0
km/s
8.7
0
Offset (km)
1.8
1.0
0
Offset (km)
1.8
Comparison with Migration Methods
(a) Standard Kirchhoff
(b) Reduced-time migration (RM)
Depth (km)
6
8.7
(c) Interferometric migration (IM)
(d) Local RTM
Depth (km)
6
8.7
0
1.8
Offset (km)
0
1.8
Offset (km)
79
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Local RTM without wavefield separation
Depth (km)
6
8.7
0
Offset (km)
1.8
80
Local RTM with wavefield separation
Depth (km)
6
8.7
0
Offset (km)
1.8
81
Local RTM using Z component only
Depth (km)
6
8.7
0
Offset (km)
1.8
82
Outline



Motivation
Theory
Numerical Tests



Schlumberger VSP Data Set
GOM VSP Data Set
Conclusions
83
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
GOM VSP Well and Source Location
Source @150 m offset
@600 m offset
@1500 m offset
Depth (m)
0
2800 m
Salt
82
receivers
4878
3200 m
Offset (m)
0
1829
84
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Velocity Profile
S Wave
P Wave
0
Depth (m)
Incorrect
velocity model
P-to-S ratio = 2.7
2800 m
Salt
P-to-S ratio = 1.6
3200 m
4500
0
Velocity (m/s)
5000
0
Velocity (m/s)
5000
85
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Z-Component VSP Data
2652
Reflected P
Depth (m)
Salt
Reverberations
Direct P
3887
1.2
3.0
Traveltime (s)
86
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
2652
X-Component VSP Data
Reflected P
Depth (m)
Salt
Direct S
Reverberations
Direct P
3887
1.2
3.0
Traveltime (s)
87
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Processing Workflow
Original Data
Rotate components
Pick desired events
Median filtering
Migration (KM, RM, IM, RTM)
88
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Migration of PPS
Raypath Coverage
Depth (m)
2000
Salt
39
receivers
4200
0
Local RTM PS
Motivation
Offset (m)
Theory
200
Numerical Tests
89
Summary
Migration of PPS
KM
RM
IM
Depth (m)
2000
Salt
4200
0
Offset (m)
Local RTM PS
200
Motivation
0
Offset (m)
Theory
200
Numerical Tests
0
Offset (m)
Summary
90
200
Migration of PPS
RM
IM, sediment flood
Local RTM
Depth (m)
2000
Salt
4200
0
Offset (m)
Local RTM PS
200
Motivation
0
Offset (m)
Theory
200
Numerical Tests
0
Offset (m)
Summary
91
200
150 m Offset LRM Image
(a) Without deconvolution
(b) With deconvolution
Depth (km)
2.9
3.9
92
0
Offset (m)
100
0
Offset (m)
100
600 m Offset LRM Image
(a) Without deconvolution
(b) With deconvolution
Depth (km)
2.9
4.4
93
0
Offset (m)
600
0
Offset (m)
600
1500 m Offset LRM Image
(a) Without deconvolution
(b) With deconvolution
Depth (km)
2.9
4.4
94
0
Offset (m)
600
0
Offset (m)
600
Reduce Time Migration Image
a) Synthetic
2.4
c) 600 m offset
b) 150 m offset
Reduce time migration Reduce time migration
Depth (km)
2800 m
4.5
Salt
3200 m
95
Summary
• Target oriented!
– Only a local velocity model near the well is
needed.
– Salt and overburden is avoided.
– Fast and easy to perform.
• Source statics are automatically
accounted for.
• Immune to salt-related interbed crosstalk.
96
Local RTM PS
Motivation
Theory
Numerical Tests
Summary
Summary
•
•
•
•
•
Introduction and overview
SSP VSP  SWP interferometric
transform
Local reverse time migration: horizontal
reflector imaging
Local reverse time migration: salt flank
imaging with transmitted P-to-S waves
Summary
97
Overview
SSPVSP
Local RTM
Local RTM PS
Summary
Acknowledgements
• Dr. Gerard Schuster and my committee
members: Dr. Michael Zhdanov, Dr.
Robert smith, Dr. Cari Johnson, Dr.
Jianming Sheng for their advice and
constructive criticism;
• Scott Leaney and Hornby Brian for
their help on modeling;
98
Acknowledgements
• UTAM friends:
– Jianhua Yu and Yonghe Sun on the research;
– Jianming Sheng and Min Zhou for their experiences
on interferometric imaging;
– Zhiyong Jiang and Ruiqing He for their help on
classes;
– Travis Crosby and all UTAM students for their
cheerful attitude; All UTAM sponsors for their support;
• Family
– My parents, brother and sister;
• Friends
– Liyun Ma, Min Zhou, Jun Wang, Shuqian Dong,
Chaoxiong Ma, who encouraged me to continue on
with my research.
99
Questions?
100