Transcript Document
NTNU Characterising Gas-lift Instabilities with OLGA2000 ASME/API/ISO Fall 2003 Gas-Lift Workshop 21-22 October 2003, Kuala Lumpur Bin Hu Ph.D Candidate Department of Petroleum Engineering and Applied Geophysics Norwegian University of Science and Technology E-mail: [email protected] Telephone: +47 7359 4975 Fax: +47 7394 4472 1 If gas injection is not critical... NTNU • Casing heading may happen • To thoroughly eliminate casing heading, make the gas injection critical 2 Is the well unconditionally stable if gas injection is critical? NTNU Replace the orifice with a venturi 3 OLGA2000 simulation settings NTNU • • • • • Vertical air/water two-phase flow No slug tracking Iso-thermal Initiated from steady-state Boundary conditions – Static IPR – Psep is constant – Constant gas source is given near the bottom of the well 4 NTNU Gas injection rate (kg/s) Stability map (L=2500m, PI=4e-6kg/s/Pa, Psep=10bara, 100% choke opening, ID=0.125m) 1,25 1,20 1,15 1,10 1,05 1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 Density wave instability can occur! 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 PR-Psep (bar) 5 OLGA simulation results 350 9.E+06 300 8.E+06 250 7.E+06 200 6.E+06 150 5.E+06 Bottomehole flowing pressure Production rate at wellhead 100 4.E+06 3.E+06 0.E+00 3 1.E+07 Production rate at wellhead (m /D) Pwf (Pa) NTNU PR is 90bara and air injection rate is about 18000Sm3/D 50 1.E+04 2.E+04 3.E+04 4.E+04 5.E+04 0 6.E+04 Time (s) 6 OLGA simulation results 1.E+07 2100 9.E+06 1800 8.E+06 1500 7.E+06 1200 6.E+06 900 Bottomhole flowing pressure Production rate at wellhead 5.E+06 600 4.E+06 300 3.E+06 0.E+00 1.E+04 2.E+04 3.E+04 4.E+04 5.E+04 Production rate at wellhead (m 3/D) Pwf (Pa) NTNU PR is 90bara and air injection rate is about 40000Sm3/D 0 6.E+04 Time (s) 7 OLGA simulation results 1.E+07 1400 9.E+06 1200 8.E+06 1000 7.E+06 800 6.E+06 Bottomhole flowing pressure Production rate at wellhead 600 5.E+06 400 4.E+06 200 3.E+06 0.E+00 1.E+04 2.E+04 3.E+04 4.E+04 5.E+04 Production rate at wellhead (m 3/D) Pwf (Pa) NTNU PR is 90bara and air injection rate is about 54000Sm3/D 0 6.E+04 Time (s) 8 Stability map for different well depth 1,1 0,9 Gas injection rate (kg/s) NTNU 1,0 0,8 0,7 2000m 2500m 3000m 0,6 0,5 0,4 0,3 0,2 0,1 0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 (PR-Psep)/ρlgL 9 Stability map for different system pressure 1,3 1,1 1,0 Gas injection rate (kg/s) NTNU 1,2 0,9 0,8 0,7 10bara 0,6 20bara 5bara 0,5 0,4 0,3 0,2 0,1 0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 (PR-Psep)/ρlgL 10 Stability map for different Productivity Index 1,0 0,8 Gas injection rate (kg/s) NTNU 0,9 0,7 0,6 4e-6kg/s/Pa 0,5 8e-6kg/s/Pa 2e-6kg/s/Pa 0,4 0,3 0,2 0,1 0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 (PR-Psep)/ρlgL 11 Stability map for different choke opening 0,9 0,7 Gas injection rate (kg/s) NTNU 0,8 0,6 0,5 100 % 0,4 50 % 10 % 0,3 0,2 0,1 0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 (PR-Psep)/ρlgL 12 Stability map for different tubing diameter 1,3 1,1 1,0 Gas injection rate (kg/s) NTNU 1,2 0,9 0,8 0,7 ID=0.125m 0,6 ID=0.10m ID=0.15m 0,5 0,4 0,3 0,2 0,1 0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 (PR-Psep)/ρlgL 13 Summary NTNU • Increasing reservoir pressure and gas injection rate increases stability. • Increasing well depth, tubing diameter, PI and system pressure decreases stability • Instability occurs only when PR Psep l gL 1 14 Production loss due to density wave instability 1.8 1.6 Normalized production rate NTNU 2.0 1.4 Open loop dynamical simulation results With feedback control 1.2 1.0 0.8 0.6 0.4 0.2 0.0 1.0E+04 1.5E+04 2.0E+04 2.5E+04 3.0E+04 3.5E+04 4.0E+04 4.5E+04 5.0E+04 5.5E+04 6.0E+04 3 Gas injection rate (Sm /D) 15 Apply feedback control to the well Variation of choke opening after controller is started NTNU 1.2 1.0 Choke opening (-) 0.8 0.6 0.4 0.2 0.0 0.E+00 1.E+04 2.E+04 3.E+04 4.E+04 5.E+04 Time (s) 6.E+04 7.E+04 8.E+04 9.E+04 1.E+05 16 Pwf (Pa) NTNU 1.E+07 2000 9.E+06 1800 8.E+06 1600 7.E+06 1400 6.E+06 1200 5.E+06 1000 Bottomhole flowing pressure Production rate at wellhead 4.E+06 800 3.E+06 600 2.E+06 400 1.E+06 200 0.E+00 0.E+00 1.E+04 2.E+04 3.E+04 4.E+04 5.E+04 6.E+04 7.E+04 8.E+04 9.E+04 Production rate at wellhead (m 3/D) Variation of Pwf and wellhead production rate 0 1.E+05 Time (s) 17 Pwf (Pa) NTNU 1.E+07 1500 9.E+06 1350 8.E+06 1200 7.E+06 1050 6.E+06 900 5.E+06 Bottomhole flowing pressure Production rate at wellhead 750 4.E+06 600 3.E+06 450 2.E+06 300 1.E+06 150 0.E+00 0.0E+00 5.0E+03 1.0E+04 1.5E+04 2.0E+04 2.5E+04 3.0E+04 3.5E+04 Production rate at wellhead (m 3/D) Manual control at the same choke opening 0 4.0E+04 Time (s) 18 Conclusions NTNU • Density wave instability can occur in deep depleted gas-lift wells. • The instability not only causes operating problem, but also reduces production. • Active feedback control is an effective method for both stabilising and avoiding production loss. • OLGA is at least capable of qualitatively capturing the instability dynamics. 19