Transcript Title
Composites: basics and terminology John Summerscales Reading for a degree Each lecture has: • PowerPoint slides on extranet o these need JS “soundtrack” (i.e. lectures) • individual lecture webpages on extranet o also read these to reinforce your learning … and to really understand the topic follow up the references and/or review papers Support materials for module • Home page on Extranet o o MATS231: http://www.tech.plym.ac.uk/sme/mats231/ MATS324: http://www.tech.plym.ac.uk/sme/mats324/ • Lecture schedule, notes and PowerPoint: o http://www.tech.plym.ac.uk/sme/mats324/PowerPoint • Home page also includes: o o o o subject index map of local composites companies links to Library Reading Lists and many other useful resources ;-) • see MooDLE student portal for assessments Support materials http://www.tech.plym.ac.uk/sme/mats231 Lecture & practical schedule Free e-books Review papers Subject index Practical • manufacture and test of a composite plate • attendance at Health and Safety lecture is an essential prerequisite for coursework list of attendees circulated for signature o if your name is not on the list, you will not be allowed to do the practical o if you do not do the practical you will fail the coursework element and hence the module. o Outline of this lecture • • • • • • • Anisotropy Fibre volume fraction (Vf) Areal weight of fabric (WF) Basic rule-of-mixtures Glass transition temperature (Tg) Crystalline melting point (Tm) Stacking sequence notation Anisotropy Degree of Principal anisotropy axes Properties Example Isotropic Orthogonal Constant regardless of direction Metals Square symmetric Orthogonal Two different principal axes Unidirectional fibres or woven cloth Orthotropic Orthogonal Three different principal axes Unidirectional weave with light weft Anisotropic Any angle Constant relative to axes Filament wound tube or many crystals Aeolotropic Any angle May change with position Timber Fibre volume fraction (Vf) • n = the number of layers • AF = the areal weight of the fabric • ρf = density of the fibre, and • t = the thickness of the laminate. nAF Vf ft Basic rule-of-mixtures 1 • Elastic properties (e.g. density or modulus) of composite calculated by rule-of-mixtures EC = κ . ηd . ηL . ηO . Vf . Ef + Vm . Em • if the first term of the equation is large, the second term can be neglected Basic rule-of-mixtures 2a The parameters are: • EC = modulus of composite • Vx = volume fraction of component x • Ex = modulus of component x • subscripts f and m are fibre and matrix respectively Basic rule-of-mixtures 2b • κ = fibre area correction factor* • ηd = fibre “diameter” distribution factor* • ηL = fibre length distribution factor • ηO = fibre orientation distribution factor * these two factors are set to unity for man-made fibres (but see lecture A9 on natural fibres) Basic rule-of-mixtures 3 ηL = fibre length distribution factor • 1 for continuous fibres • fractional for long fibres • 0 if fibre below a “critical length” Basic rule-of-mixtures 4 ηO = fibre orientation distribution factor • a weighted function of fibre alignment, essentially cos4θ: 1 for unidirectional o 1/2 for biaxial aligned with the stress o 3/8 for random in-plane o 1/4 for biaxial fabric on the bias angle o Basic rule-of-mixtures 5 • Vf = fibre volume fraction o 0.1-0.3 for random o 0.3-0.6 for fabrics o 0.5-0.8 for unidirectional • consolidation pressure: o no pressure gives the lower value o Vf increases with pressure Basic rule-of-mixtures 6 • Ef = elastic modulus of fibre o glass = ~70 GPa (equivalent to aluminium) o aramid = ~140 GPa o carbon = ~210 GPa (equivalent to steel) • figures above are lowest values i.e. for standard fibres Transition temperatures in ascending order • Tg = glass transition temperature • Tc = peak crystallisation temperature • Tm = crystalline melting point typically Tm = Tg + 200±50°C nb: no melting point in amorphous materials • Tp = processing temperature typically Tp = Tm + ~30°C for “semi”-crystalline polymers Tg follows cure temperature in thermosets • Td = degradation/decomposition temperature may limit Tp (especially for PVC) Glass transition temperature (Tg) • Temperature at which segmental motion of the chain is frozen out below Tg polymer is elastic/brittle o above Tg polymer is viscoelastic/tough o more rigorous than heat distortion temperature o • Tg for thermoplastics = Tm - ~200°C • Tg for thermosets follows cure temp. Crystalline melting point (Tm) • all polymers have a Tg • only some polymers have a Tm o they must be able to form crystals normally a regular repeating structure rarely 100% crystalline • polymers may degrade before melting usually the case for thermoset Composites How fibres can be arranged in order of increasing stiffness and strength: • 3-D random o e.g. injection moulding grades. • planar random o e.g. moulding compounds, chop strand mat, random swirl. • quasi-isotropic (QI) o e.g. continuous fibres oriented at 0°/-45°/90°/+45° or 0°/60°/120°. • bidirectional o e.g. woven fabrics or cross-plied UD laminates at 0 °/90 °. • unidirectional (UD) o e.g. pultrusions and aligned monolithic fibre composites. Four types of fibre-reinforced composite • Monolithic (material) o all layers aligned parallel • laminate (structure - see next slides) o orientation changes between layers • hybrid (structure – MATS324 lecture A6) o more than one type of fibre (e.g. carbon/glass) • Sandwich (structure – MATS320) o composite skins and lightweight core Laminate stacking sequence notation • typical laminate stacking sequence is: o [0º/+45º/-45º/90º]ns • where the subscripts are: o o o o o n is the number of repeats of the sequence Q indicates antisymmetric laminate s means the laminate is symmetric T is the total number of plies overbar denotes that the laminate is symmetric about the mid-plane of the ply • Thus for n = 2 above, the sequence will be: o 0º/+45º/-45º/90º/0º/+45º/-45º/90º*90º/-45º/+45º/0º/90º/-45º/+45º/0º o with * denoting the line of symmetry. I-beam vs stacking sequence Beam stiffness reduces from left to right: Laminated composite plate: 0° layer or 90° layer Equivalent beam: high EI vs low EI segments Key points of this lecture • • • • • • • • resources on Student Portal and Extranet anisotropy fibre volume fraction (Vf) areal weight of fabric (AF … sometimes WF) basic rule-of-mixtures glass transition temperature (Tg) crystalline melting point (Tm) stacking sequence notation