Transcript Slide 1
FOS 6355 Summer 2005 Russell Rouseff Isotope Abundances • • • • • • • 16O (~99.76%) 17O (0.04%) 18O (0.20%) 12C (~98.9%) 12.0107 Amu 13C (~1.1%) 35Cl (75.77%) and 37Cl (24.23%) 35.4527 79Br (50.50%) and 81Br (49.50%) 79.904 High Resolution MS Molecular ion M+ = 84.0937 C6H12 Possible compounds ?? element number mass total C 6 12 72 H 12 1 12 84 C5H8O element number mass total C 5 12 60 H 8 1 8 O 1 16 16 Formula C6H12 Mass C5H8O 84.0939 84.0575 Establishes molecular formula of unknown IR-MS • Mass spectrometry is also used to determine the isotopic composition of elements within a sample. Differences in mass among isotopes of an element are very small, and the less abundant isotopes of an element are typically very rare, so a very sensitive instrument is required. These instruments are called isotope ratio mass spectrometers (IR-MS) and use a single magnet to bend a beam of ionized particles towards a series of cups which convert particle impacts to electric current. Menthol Peppermint Oil Time of Flight MS Time of Flight MS Ion Trap MS Ion Trap Limitations Requires careful quantitation Limited dynamic range Subject to space charge effects and ion molecule reactions No sensitivity gain using SIM Vanillin - quadrupole 152 100 OH O O 50 106 109 81 122 53 27 29 76 39 65 78 92 136 95 15 0 10 20 30 40 50 (mainlib) Benzaldehyde, 2-hydroxy-3-methoxy- 60 70 80 90 100 110 120 130 140 150 160 Vanillin – Ion Trap 151 100 O O HO 50 123 81 109 65 53 51 41 63 55 77 67 93 137 0 40 50 (rouseff) Vanillin 60 70 80 90 100 110 120 130 140 150 160 170 151 Adam’s Library Spectrum 81 109 123 (a) Vanillin Standard (b) Sample (c) 40 60 80 100 mass (m/z) 120 140 160 Unpasteurized NFC GFJ Intensity TIC 20.5 20.6 20.7 20.8 20.9 21 21.1 21.2 Retention Time (min) 21.3 21.4 21.5 Unpasteurized NFC GFJ TIC Isopropyl Hexanoate Intensity o Allo-Ocimene o 20.5 20.6 20.7 20.8 20.9 21 21.1 21.2 Retention Time (min) 21.3 21.4 21.5 MS/MS Vanillin – Ion Trap MS/MS Purity: 765 Fit: 867 R-Fit: 780 Sample 300 Standard 200 40 60 80 100 120 140 mass (m/z) 100 0 7.5 8 8.5 Retention Time (min) 9 9.5 80000 m/z 151 60000 40000 TIC 20000 0 35.5 Arbitrary Y / Arbitrary X File # 2 : SUR151 36 36.5 37 37.5 38 38.5 39 39.5 Stacked Y-Zoom CURSOR Res=None Common Neutral Fragments mass loss composition 1 amu H 15 CH3 17 OH 18 H2O 19 F 20 HF 27 C2H3, HCN 28 C2H4, CO 30 CH2O 31 CH3O 32 CH4O, S 33 CH3 + H2O, HS 33 H2S 35(37) Cl Common Fragments Linear Alkanes Loss CH3 first - 15 Then ethene groups – C2H4 (28) or methlene CH2 (14) branched alkanes from more stable carbocations Decane Esters, Acids and Amides Loss of group attached to carbonyl, X group forms substituted oxonium ion From carboxylic acids From unsubstituted amides Alcohols Lose hydrogen and hydroxyl radical Also lose a-alkyl (or H) groups, forms oxonium ions R1 and R2 in a position 56 31 100 41 43 27 OH 50 42 29 55 39 28 26 15 14 33 45 38 19 57 37 32 73 0 10 14 (mainlib) 1-Butanol 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 Aromatic Hydrocarbons forms “aromatic cluster”, m+, m-1, m/e = 65 benzyl carbocation forms tropylium ion, then loss of acetylene = m/e 65 benzyl carbocation Aldehydes and Ketones Major cleavage – loss of one side chain (ketones) generates substituted oxonium ion McLafferty rearrangement loss of neutral ethene – C2H4 71 100 43 O O 29 88 27 50 41 42 39 60 45 73 70 28 101 15 14 55 31 69 57 47 116 90 0 10 20 30 (mainlib) Butanoic acid, ethyl ester 40 50 60 70 80 90 100 110 120 130 Ethers Lose methyl group – CH3 M-15 forms substituted oxonium ion Halides Simple loss of halogen molecular ions of Cl and Br show “halide pair” 35Cl/37Cl ratio is roughly 3.08:1 79Br/81Br ratio is 1.02:1 Unknown Halide Spectrum 64 100 28 29 27 50 66 26 49 51 0 20 24 Ethyl Chloride 30 32 28 32 35 37 39 41 36 40 44 44 48 50 52 48 52 59 56 61 60 63 65 64 67 68 Unknown Formula = C5H12O Examples Vanilla comparison Identification of rose oil volatiles