Diapositive 1

Download Report

Transcript Diapositive 1

 Introduction
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Belief functions for image analysis
and processing
S. Le Hégarat-Mascle
University Paris-Sud (France)
18/07/2015
1
 Introduction
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Introduction to image processing
Image definition :
• Bidimentional signal with finite support and bounded values {y(i,j), i[1,N], j[1,M]}
values may be
• binary  y(i,j){0,1},
• grey level  y(i,j)[ymin, ymax] (generally [0,255]),
• RGB  y(i,j) = (yred, ygreen, yblue) with yred [ymin, ymax] etc.,
• multispectral y(i,j) = (yl1, yl2, …, yln) with li the ith wavelength and yli [ymin, ymax],
• multitemporal y(i,j) = (yt1, yt2, …, ytn) with ti the ith time sample and xti [ymin, ymax].
• Stochastic process {y(s), s[1,NM]} , Random vector (y(1), … y(NM))
• Surface (i,j,x(i,j))[1,N][1,M]
18/07/2015
2
 Introduction
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Some problems of image
processing
‘Cartography’  image should be interpreted as a map of …
depth values (based on stereo-image pair),
soil surface in remote sensing observation (Earth…),
organs and tissues in medical imaging (given single-slice),
... label in classification...
 to decide what is the unknown value in every pixel, this estimation is
for an unknown parameter or for a label
‘Detection/identification’  image should be interpreted to derive…
the objects of interest,
the current features of the objects of interest,
…
(Numerous processing provide indicators for this high level problem:
edges, interest points, local image features (color, histogram…))
 to detect and characterize the objects present in the image or video
sequence, e.g. classification at object level, object tracking.
18/07/2015
3
 Introduction
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
What can provide the belief
functions to these problems? (I)
TBF main availabilities:
• able to model both uncertainty and imprecision,
• able to model ignorance,
• able to deal with the source correlation ( idempotent combination),
• able to measure the conflict between sources (m(), etc.),
• …
 TBF is interesting for classification problems:
• When a source gives information about some classes but not about other ones,
in particular when a source does not distinguish some classes, TBF allows dealing with
class ambiguity,
• When the global source reliability depends on the source, TBF allows to discount
the less reliable sources,
• When the class set or the class parameters have to be validated a posteriori, TBF
provides several conflict measures,
• When combining different classifiers that are not independent, TBF provides
idempotent rules.
18/07/2015
4
 Introduction
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
What can provide the belief
functions for these problems? (II)
Now there are two main features of image data
• There are a lot of pixels
• Pixels are not spatially independent
 TBF is interesting:
• When mage processing use several sources (data images or outputs of
image processing algorithms)  to deal with the source imprecision,
source combination, etc.
• Sources are complementary (partially) in terms of class/object
detection/identification: e.g. images acquired in different modalities (wavelength,
polarisation…)  to deal with each source contextual ambiguities/imprecision,
or local ignorance,
• To model pixel spatial relationships  to deal with spatial imprecision & to
introduce imprecise spatial information
• For unsupervised classification  to deal with discernment frame dynamic
estimation and/or to check class validity a posteriori
18/07/2015
5
 Introduction
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Outline of the presentation
Belief function for multisource classification
 Supervised case, pixel level
From spatial imprecision to spatial information
 Spatial imprecision introduces ambiguities at class border
 Spatial information viewed as an independent information source
Automatic estimation of the discernment frame
 Case of unsupervised classification
 Case of sequential estimation at image level
Video sequences and object tracking problem
 Data association sub-problem
18/07/2015
6
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Belief function for multisource
classification
Supervised case, pixel level
Fusion may be performed in each pixel to
remove some classification errors
18/07/2015
7
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Image classification problem
A data image is a realisation y of a random field Y = {Ys, sS}, with S the set of
pixels (location), |S| is the number of pixels, and Ys (or d etc.)
 another random field X = {Xs, sS}, whose realisation x is hidden, XsW, |W|
is the number of labels or classes ;
The aim of classification is to retrieve x the label field knowing the
observation one y.
Different criteria: distance, ML (maximum of likelihood), MAP, MPM, etc.
Different constraints: supervised /unsupervised approach, etc.
• Blind classification:
For every sS, estimation of xs knowing ys : s  S , x s  arg max P x s   / y s 
W
• Markovian models:
For every sS, estimation de xs knowing {ys, sVS}
18/07/2015
 arg max P y s / x s   .P  
W
8
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Multisource classification
Case of n observation sources:
Y = {Ys, sS} is now Y(1) = {Ys(1) , sS}, Y(2) = {Ys(2) , sS}, ..., Y(n) = {Ys(n) , sS}
Classical assumptions:
• The random variables (Ys(1),...., Ys(n))sS are independent conditionally to X,
 X contains all the dependencies between pixels
• For given pixel s, the distribution of (Ys(1),...., Ys(n)) conditional to X is equal to the
distribution of (Ys(1),...., Ys(n)) conditional to Xs,
 Xs gives the distribution of the observation (Ys(1),...., Ys(n)) in s
• For given s, the random variables Ys(1),...., Ys(n) are independent conditionally to Xs,
 can be relaxed taking into account the source correlation (e.g. using
cautious conjunctive rule)
Case of homogeneous multi-sources : 1 label field
• data fusion interest  take advantage of source redundancy to remove
classification noise
• TBF interest  model the ambiguities between some classes, of the different
sources
18/07/2015
9
 Introduction to image processing
 BF for multisource classification
 taking into account spatial context
 discernment frame estimation
 class parameter estimation
 BF for tracking problem
Multisource classification
supervised case, pixel level
Blind classification : dependencies between pixels are disregarded!
Assume several sources = radiometric images Y(1), Y(2), ..., Y(n)
 Each one has its own ability to distinguish classes :
e.g. S1=radar band L , S2=radar band
C, C1=dense vegetation, C2=bare
soil, C3=sparse vegetation
3 classes
W{C1,C2,C3}
S1 2 classes
{C1, C2C3}
S2  2 classes
{C2,C1C3}
 W is a refinement monosource discernment frames
 bbas are defined in every pixel
e.g. (in the ex.)
m1    1  1

m1 C2 ,C3  1t
m C    1  t 
 1 1
1
18/07/2015
m2    1   2

m2 C1 ,C 3   2u
m C    1  u 
 2 2
2
with (t,u)[0;1]2
10
 Introduction to image processing
 BF for multisource classification
 taking into account spatial context
 discernment frame estimation
 class parameter estimation
 BF for tracking problem
Bloch I., 1996, “Some aspects of Dempster-Shafer evidence theory for
classification of multi-modality medical images taking partial volume effect
into account”, Pattern Recognition Letters, 17(8): 905-919.
Objective: classifying brain tissues of patients suffering from
adrenoleukodystrophy (ADL)
Sources = 2 dual echo MRI images (one slide)
W{C1,C2,C3} with C1=Ventricles (V) and cerebro-spinal fluid (CSF),
C2=White Matter (WM) and Grey Matter (GM), C3=ALD
First modelling of the sources 
-for S1, {C2,C3} is focal element but not {C1,C2}, {C1,C3}, W, and
-for S2, {C1,C2} is focal element but not {C1,C3}, {C2,C3}, W.
Second modelling of the sources: taking into account partial volume effect
between ADL and WM 
-for S2, {C2,C3} also is focal element.
18/07/2015
11
 Introduction to image processing
 BF for multisource classification
 taking into account spatial context
 discernment frame estimation
 class parameter estimation
 BF for tracking problem
Le Hégarat-Mascle S. and Seltz R., 2004, “Automatic change detection by evidential
fusion of change indices”, Remote Sensing of Environment, 91(3-4):390-404.
Objective: detection of the change affecting
continental surfaces, e.g. forest fire damage
evaluation.
July 15, 1989
Sept. 4, 1989
Logical sources
- the SAVI normalized (i.e. histogram matching)
difference values,
- the texture (cluster shade ) difference,
- the mutual information, locally to a window.
Discernment frame
W={Change=C, NoChange=NC}
Preprocessing of the sources
 1 class (NC) or 2 classes (C,NC)
‘normalised’
SAVI difference
18/07/2015
Cluster shade
difference
Local mutual
information
12
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Discernment frame: W={C, NC}  closed world and A{C,NC}, Pl(A)-Bel(A)=m(W)
Source modelling : m(W) maximum at class border when 2 classes are detected
2 index fusion result
‘ norm.‘ SAVI dif.

2 ind. fus. imprecision
Cluster shade dif.

3 index fusion result
Mutual inform.
18/07/2015
3 ind. fus. imprecision
13
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
From spatial imprecision to spatial
information
Spatial imprecision introduces ambiguities
at class border
18/07/2015
14
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Spatial imprecision
Two main causes of spatial inaccuracy:
• Intrinsic to an image: mixing pixels

ex.:
•

or
…
Between two images: imprecision in spatial registration
ex.
S1

S2

18/07/2015
15
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Bloch I., 2008, “Defining belief functions using mathematical morphology –
Application to image fusion under imprecision”, IJAR, 48: 437-465.
Basic idea: use the mathematical morphology operators to learn the determine the
disjunction beliefs
Use a structuring element to evaluate the mass function imprecision:
Consider that a bba is also as a function on the image domain S: s  S ,A W ,ms As
Case of a bba m0 ‘without’ imprecision and ‘at most’ 2 disjoint focal elements A, B:
s  S ,m0 Bs  1  m0 As
 Imprecision can be added to m0 as follows:
s  S ,H A ,B,Pl H s   m0 H s,BelH s   m0 H s
 s  S ,H A ,B,mH s   m0 H s,mA ,Bs   m0 H s   m0 H s
Using duality: s  S ,BelBs   m0 Bs   1  m0 As  1   m0 As  1  Pl As
 m is a bba well defined (values in [0,1], sum=1)
 {A,B} is now a focal element of m, with value defined accordingly to the context observed
through the structuring element
Case of closing and opening instead of dilatation and erosion MM operators:
s  S ,H A ,B,Pl H s   m0 H s,BelH s   m0 H s
 s  S ,H A ,B,mH s   m0 H s,mA ,Bs   m0 H s   m0 H s
18/07/2015
16
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Math. morphology operators:
background notions (I)
Math. Morphology (MM) operators defined on complete lattice L (partially ordered set w.r.t.
, with a supremum and an infimum for every non-void subpart)  For grey level images, L =
the lattice of functions on the image domain S,  = the partial order on numerical functions.
MM operators are defined through a structuring element g (invariance by translation)
For g flat (S subset), denoting Es the support of g translated in sS:
s  S ,
 g y s  sup y s'
s'E s
 g y s  inf y s'
s'E s
Duality: y  y s , s  S ,y s 0 ,1,  g y   1   g 1  y 
Properties:
y  y'   g y    g y'  and  g y    g y' 
Monotonically increasing relatively to y
 g y   y   g y 
(Anti-)Extensivity if 0 Ex the support of g
Monotonically (De)Increasing relatively to g
Adjunction
g  g'   g y    g' y  and  g y    g' y 
y   g y'    g y   y'
Commutations: e.g.  g  g' y    g y    g' y  ,  g  g' y    g y    g' y 
18/07/2015
etc.
17
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Math. morphology operators:
background notions (II)
For g flat (S subset), denoting g the transpose of g:






 g y s    g  g y s   sup  inf y s'' 

s'E s 
s''E s'
g y s    g


 g y s   inf  sup y s'' 

s'E s 
s''E s'


Duality: y  y s , s  S ,y s 0 ,1, g y   1   g 1  y 
Properties:
 y    g y' 
Monotonic increasing relatively to y: y  y'   g
g y   g y' 
(Anti-)Extensivity:  g y   y  g y 
 y    g' y 
(De)Increase relatively to g: g  g'   g
g y   g' y 
    y   
y 
 g m  g n  g maxm ,n 
Idempotence



 m   n y    maxm ,n  y 
 g
 g  g
Morphological filters
 g y    g y   y  g y    g y 
18/07/2015
18
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Ex. on simulated data
BA
m1(B)
m2(A)
m2(B)
Source S2
S1 classif.
S2 classif.
S1&2 classif.
Opening
 (mi)
Erosion
 (mi)
m1(A)
Source S1
Structuring
element
55
Structuring element 33
18/07/2015
Structuring
element
77
19
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Ex. on simulated data
Source S2
Source S1
S2 classif.
C1
C3
99
C1
C3
C2
C2
77
55
C1C3
C2
C3
S1&2 classif.
Structuring element
S1 classif.
Ground truth
C1C2
C1
C3
C2
33
18/07/2015
Erosion
 (mi)
Opening
 (mi)
20
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Spatial information viewed as an
independent information source
Link with A Priori Probability and Markov
Random Fields models
18/07/2015
21
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Contextual classification
Basic idea: a priori on the probability of a configuration of X
Classical models: regular configurations more probable than irregular ones
Configurations defined on a neighbourhood, e.g. 4-connectivity, 8-connectivity, ...
Basic idea: neighbour label configuration is an information source
 Modelling it through a bba mN and combining it with the other bbas
1st example:
forbidden configurations  conditioning on the possible (allowed) configurations
e.g. a priori about isolated pixels  not possible:
N1
Assume a 3 label/color discernment frame ({Red,Green,Yellow}).
Given the neighbourhood N1, there is only one focal element: mN({Red})=1, and
Given the neighbourhood N2, mN({Green})=0 and {Red,Yellow} is focal element
N2
2nd example:
More ‘credible’ configurations  ad-hoc bba
e.g. Contextual a priori probabilities => bba allocation from these probabilities
e.g. Given neighbourhood N2, mN({Red})=2/9, mN({Red,Yellow})=2(3/9),
mN({Red,Green,Yellow})=1/9
18/07/2015
22
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Le Hégarat-Mascle S. et al., 1998, “Introduction of neighborhood information in
evidence theory and application to data fusion between radar and optical images
with partial cloud cover”, Pattern Recognition, 31(11):1811-1823.
Objective: forest area detection
The sources: radar and optical sensor
 cloud  ignorance,
 cloud boundaries  imprecision,
 speckle  imprecision.
Discernment frame W= {Forest (F),
unforested area (NF)}
Modelling the sources:
Ad-hoc mass allocation
• Radar image  global discounting based on monosource performance (learning step)
• Optical image  mO(W)=1 on the cloud mask, mO(W)  around the cloud mask
 Ability to give more importance to radar image and neighbourhood under and
around the clouds
18/07/2015
23
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Bba representing neighbourhood information:
 based on empiric frequencies of F and NF in the
pixel neighbourhood
 discounted to weight it relatively to remote sensing
data bba (mRmO)
Data fusion  Iterative process
1. compute remote sensing bba mD= mRmO and spatial bba
mN s.t. mN(W)=1
2. perform multisource classification m= mDmN
3. update mN
4. if stopping criterion is not verified goto step 2.
Comparison with SAR errors:
Yellow=corrected pixels, blue=uncorrected errors,
green=new
errors
18/07/2015
24
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Link with Markov random fields
Bendjebbour A. et al., 2001, “Multisensor image segmentation using DempsterShafer fusion in Markov fields context”, IEEE Trans. Geoscience & Remote Sensing,
39(8):1789-1798.
Formal extension of probabilities defined on W={1,...,k} to 2W
 P(X=x) replaced by M0 et P(Y=y/X=x) replaced by My
 If M0 is a Markov Random Field with M0[x]=.e-U(x), where U(x) is a sum potential
over the clique set, and if My is such that A  As sS , As  W ,My A   m1s  ... msn As 
sS
where n is the number of sources
then M0My represents a Markov field


The main difference with previous model is the spatial bba definition. Indeed:
1
1

Uc  x s ,sc 

  Uc  x s ,sc 

Uc x s ,sc 
c
c
M0 x    .e U x    .e
cC
  . e
cC ,sc
sS
 x s  W ,m0 x s   e
cC ,sc
Alternative def. : Richards J. and Jia C., 2007, “A Dempster-Shafer relaxation approach to
context classification”, IEEE Trans. Geoscience & Remote Sensing, 45(5):1422-1431.
18/07/2015
25
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Markov random fields: background notions
X is a MRF , i.e. PX s  xs / x s   PX s  xs / xt ,t Vs  where x s  xt ,t  S ,t  s
and P(X)>0 X
1
Z
 X is a Gibbs field, i.e. P  X  x   exp U x 
with U x  
Uc x s , s  c 
cC
where C is the set of cliques (a clique being a subset of S so that it is a
set of pixels mutually neighbours w.r.t. the considered neighbourhood)
Then:
PX s  x s / X  s  x s  
exp Us x s , xt ,t Vs 
 exp Us xs  ls , xt ,t Vs 
4-connex:
8-connex:
l s W
Maximum A Posteriori criterion  x* y   arg max Py / x' .Px' 
S
x'W
Using assumptions:
P(Y=y / X=x) = sS P(Ys=ys / Xs=xs) (conditional indep. w.r.t. X)
sS, P(Ys=ys / Xs=xs) > 0  Us0(xs,ys)=-ln(P(ys /xs))
 The couple (X,Y) is MRF:
P  X  x,Y  y  
18/07/2015


1
exp   Uc ( xs , s  c )   Us0 xs , y s 
Z
 cC

sS
26
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Comparison on simulated data
: discounting parameter b: Potts model parameter
 b if x s  x s'
applied to mD=m1  m2
Uc s ,s'  x s , x s'   
 b if x  x

Source S1
=0.5
b=25.
=0.25
b=10.
s
s'
Source S2
S1 classif.
S2 classif.
b=1.
=0.
S1&2 classif.
Ad-hoc
neighbour mass
Ground
truth
18/07/2015
Markov modelPotts mass
27
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Automatic estimation of the
discernment frame
Case of unsupervised classification
18/07/2015
28
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Minimum multisource discernment frame
Case of unsupervised classification:
Discernment frame (DF) = set of distinguishable classes  How learning this set?
Basic idea: monosource classification are information sources for multisource
DF estimation
 Consider the non-empty intersections of every pairs (2 source case) of
monosource classes (i.e. Singleton hyp. in the monosource DF)
 Such a DF is the minimum (in terms of number of elements) DF that is a common
refinement of monosource DF
Ex. S1  {A1,A2}, S2  {B1,B2}, the min. common DF is {AiBj s.t AiBj, (i,j){1,2}2}
Now some classification errors may produce fictitious class (intersections)
 remove them based on a criterion of minimum number of pixels after robust
classification (e.g. multisource)  iterative algorithm
18/07/2015
29
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Iterative DF estimation
Basic algorithm (2 sources Y1, Y2, defined over lattice S)
• Compute the monosource classifications X1, X2: s  S , x1s Ai ,1  i  c1, x2s Bi ,1  i  c2
• Compute the bbas of the sources m1W1 and m2W2 in their respective discernment
frames W1 and W2: W1  Ai ,1  i  c1,W2  Bi ,1  i  c2
• Initialize W1,2 (DF) to the set of non empty intersections between monosource classes
• Repeat until stop (W1,2 does not change)


 
 
W1 ,2  Hi  A j  Bk / x1s  A j  x 2s  Bk  0
W
W
• Extent the bbas m1W1 and m2W2 to W1,2: m1 1 ,2 and m2 1 ,2
W
W
W
• Compute the combination: m1 ,21 ,2  m1 1 ,2  m2 1 ,2
• Compute the multisource classification X1,2
• Remove the hypotheses of W1,2 not enough supported:
 

W1 ,2  W1 ,2 \ Hi / x1s ,2  Hi  nmin

• Perform final multisource classification (if different decision criterion and/or
introduction of supplementary information)
18/07/2015
30
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Simulated example (step by step)
Ground truth
W1,2=9
Source S1
W1,2=8
W1,2=7
2 kinds of imprecision:
-Class ambiguities
-Superimposition error (1-2 pixels)
Source S2
W1,2=6
W1,2=5
18/07/2015
W1,2=4
W1,2=3
W1,2=2
31
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Le Hégarat-Mascle S. et al., 1997, "Application of Dempster-Shafer evidence
theory to unsupervised classification in multisource remote sensing", IEEE
Transactions on Geosciences and Remote Sensing, 35(4):1018-1031.
L band Airsar VV
power
TMS, band 10
TMS & L band SAR
TMS & L band SAR
C band & L band SAR
TMS & C band SAR
TMS & C band SAR
& L band SAR
Forest
Wheat
Peas
Corn
Barley
Flax
Broad beans
String beans
Town
unidentified
Classified pixels
Conflict m()
according decision rule:
H  arg max BelHi  if BelH   BelH 
Hi W
18/07/2015
32
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Sequential estimation of the
discernment frame
Case of classification at image level
18/07/2015
33
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Classification problem at object level
Example in videosurveillance application:
Different kinds of methods : Segmentations methods, bounding box of
areas of interest, etc.  binary image at ‘window’ resolution
Connected component (CC) labeling step 
 Problem is rewritten as a problem of multilabel classification at image level:
Assuming N CCs noted {Oi}i{1,...,N} decide which ones correspond to actual objects:
Discernment frame about the object actual existence  product space
O1, O1 ... Oi , Oi  ... ON , ON 
Ex. W  O1 ,O1 O2 ,O2  O3 ,O3  O1 ,O2 ,O3 ,O1 ,O2 ,O3 ,O1 ,O2 ,O3 ,O1 ,O2 ,O3 ,...,O1 ,O2 ,O3 
 Unsupervised classification  determine object features (size, location, etc.)
simultaneously to classification
18/07/2015
34
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Subproblem: dynamic updating of the
set of the objects
Sources are assumed either simultaneous (time static) or compensated for object motion
 Only cope with 2 source imperfections : false alarm existence and object fragmentation
 CC association is simply based on spatial
relationship (e.g. spatial overlapping) 
Fusion is performed sequentially
 updating of the set of
potential objects  W
 Updating the beliefs on W
18/07/2015
35
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Rekik, W. et al., 2013, “Dynamic estimation of the discernment frame in
belief function theory”, Int. Conf. on Information Fusion.
Assume several sources  As many cross-product spaces to represent the
beliefs about the object actual existence O1 ,O1 ... ON ,ON  O'1 ,O'1, ... O'N' ,O'N' 
 Case where W (updated DF) is simply an extension of WO:



W  WO  O'i1 ,O'i1  ... O'il ,O'il

N
• For each BBA mO defined on its own cross-product space WO   Oi ,Oi 
i 1
• for each element Oi ,Oi  of WO,
• marginalize mA to Oi ,Oi  mOWO Oi ,Oi 
W
WO Oi ,Oi  

• extend the obtained BBA on common discernment frame W   mO

W O ,O 
• Combine the BBAs extended on W  m   mO O i i 


W
W


 mWO' O'i ,O 'i  
 O'



W

 Case where some Oi have been found to represent the same object:
After marginalization mOWO Oi ,Oi  , fusion/redefinition the marginalized
BBAs that represent the same object
Decision:
Maximum of pignistic probability  choose, for every potential object, the
WOi ,Oi 
hypothesis maximizing the marginal mass m
among Oi ,Oi 
18/07/2015
36
 Introduction to image processing
 BF for multisource classification
Example:
Hyp.
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
WO  O1 ,O1 WO
, '  O'1 ,O'1 O'2 ,O'2  , O1  O'1  W  O1 ,O1 O2 ,O2
(O1,O2) (O1,O2) (O1,{O2,O2}) (O1,O2) (O1,O2) (O1,{O2,O2}) ({O1,O1}, O2) ({O1,O1}, O2)
W
WO1 ,O1 
0
0
0.4
0
0
0.5
0
0
0.1
WO1 ,O1 
0
0
0.4
0
0
0.5
0
0
0.1
WO2 ,O2 
0
0
0
0
0
0
0.3
0.6
0.1
0.072
0.144
0.024
0.105
0.21
0.035
0.003
0.006
0.001
m1
m2
m2
mW
BetPW
mW[H]()
0.1429 0.2654
0.5
0.425
/
0.2071 0.3846
/
/
/
/
/
0.456
/
/
/
/
0.348
mW()=0.4
Hyp.
(O1,O2) (O1,O2) (O1,{O2,O2}) (O1,O2) (O1,O2) (O1,{O2,O2}) ({O1,O1}, O2) ({O1,O1}, O2)
W
WO1 ,O1 
0
0
0.4
0
0
0.5
0
0
0.1
WO1 ,O1 
0
0
0.4
0
0
0.5
0
0
0.1
WO2 ,O2 
0
0
0
0
0
0
0.15
0.35
0.5
0.036
0.084
0.12
0.175
0.0015
0.0035
0.005
0.1633
0.245
/
0.2367
0.355
/
/
/
/
0.4375 0.3875
/
0.366
0.294
/
/
/
/
m1
m2
m2
mW
BetPW
mW[H]()
0.0525 0.1225
18/07/2015
37
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Video sequences and object
tracking problem
Def.: 1 target = 1 object detected at time t
1 track = 1 object detected at different times
18/07/2015
38
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Data association sub-problem
If 1-1 associations AND
additive cost function  Matrix
of the association costs
2
4
1
2
Solution  Hungarian (Munkres)
assignment algorithm
Matrix of the association costs based on
o Criteria of feature similarity:
o Criteria of distance:
• Radiometric, colour, texture,
• in the image domain,
• Pattern: surface, height/width ratio,
• 3D…
• Others : speed…
 Predict tracks at t (from t-1) to assess their similarity / distance with the targets at t:
• Pattern features (colour etc.)  generally assumed to be constant in time …
• Spatial locations (image, 3D)  generally predicted assuming a regular motion
 Extension to the case of 0-1 or 1-0 associations: N targets, M tracks
• Extent the cost matrix to (N+M)(N+M) (or to max(N,M))
• Define costs of non association (of a track and of a target)
18/07/2015
39
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Mercier D. et al., 2011, “Object association with belief functions, an
application with vehicles”, Information Sciences, 181(24):5485-5500
• BF represent the information regarding the association of pairs (target, track)
• 3 discernment frames: Wi,j={0,1}, WOi={T1,..,TM,*}, WTj={O1,..,ON,*}
• Basic knowledge deals with the potential association of target Oi with track Tj 
expressed on the discernment frame Wi,j={0,1}  mWi,j
 interest of TBF = possibility to model (partial) ignorance relative to the relevance
of this association.
• Refined discernment frames WOi={T1,..,TM,*} or WTj={O1,..,ON,*} (* = non association)
 m
Wi , j WOi
Tj   mWi , j 1 ,
• Combination  m
WOi
M
Wi , j WOi
Wi , j WOi
 m
 
j 1
m
Tj   mWi , j 0 , mWi , j WOi WOi  mWi , j Wi , j 
or/and
m
WT j
N
m

N

W Oi
Tai  
• Decision: association function â(.)= arg max  BetP

a. i 1


Wi , j WT j
i 1
Relatively to the ‘classic’ approach:
W
 replace the costs of the potential association of Oi with the different Tj by BetP Oi T j 
Derive the cost from beliefs taking into account the partial ignorance
replace the sum (of the costs) by the product  take the log to use Hungarian algorithm
18/07/2015
40
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Toy example: [M11] solution
• Basic belief about association between track and target
Hyp.
yes
no
?

0.7
0.1
0.2

0.5
0.1
0.4

0.5
0.1
0.4

0.1
0.7
0.2
Hyp.


0.7
0.1
0.2


0.1
0.5
0.4
0.37
0.19
0.08



0.5
0.1
0.4


0.7
0.1
0.2
0.73
0.07
0.08

BetP
0.6406 0.3594
0.875
0.125
 0.875  0.3594  0.6406  0.125


and

18/07/2015
41
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Ristic B. and Smets P., 2006, “The TBM global distance measure for the association
of uncertain combat ID declarations”, Information Fusion, 7:276-284
 Use the same frame of discernment for both problems of class estimation and data
association problem
 1 discernment frame: ={q1,..., qN}
 Basic knowledge deals with the potential class of an object Oi  m{Oi}
• The objects are unlabeled  2 sets of objects with unknown correspondences
• for n researched pairs of objects observed at t and at t+1, discernment frame for
multiple objects assignment is 2n
• Maximising the plausibility of the hypothesis H  2n forcing the same class for
associated objects 
• The data association is specified by the association function â(.), that is a permutation
of the indexes i{1...n}, so that:
n 

2n







aˆ  arg max  pl
q Oi   q Oai  ,i  1...n   arg max   1  mO O  
i
a i 



a.
a. i 1 




Transposition to the data association problem between tracks and targets:
 generalize  to the features on with tracks and targets have to agree
 Localisation, speed, etc.
 replace the 2 sets of objects by the set of targets Oi and the set of tracks Tj
18/07/2015
42
 Introduction to image processing
 BF for multisource classification
 Taking into account spatial context
 Discernment frame estimation
 Class parameter estimation
 BF for tracking problem
Toy example: [RS06] solution
• =set of elementary blocks forming a partition of the region
Hyp.

0.5
0.5
0
0
0
0
0
0
0
0
0.5
0
0
0
0
0
0
0
0
0
0.5
0.5
0
0
0
0
0
0
0
0
0.5
0.5
=
(


)=
(

)=
 1  0.251  0.25  1  01  1
 m()
0.25
1
0
0.25
18/07/2015


and

43