Transcript Document

Harnessing Quantum Weirdness:
Quantum Computing with Cold Atoms
US National
Security Agency
US Advanced Research
and Development Activity
US Army
Research Office
National Science
Foundation
Paul C. Haljan
University of Michigan
October 2004
FOCUS
Michigan
FOCUS Center
ENIAC
(1946)
The first solid-state transistor
(Bardeen, Brattain & Shockley, 1947)
Moore’s Law
Source: Intel
The Ant and
the Pentium
~100 million transistors
INTEL
Pentium 4
transistor
Size of an atom
~ 0.1nm
“There's Plenty of Room at the Bottom”
(1959 APS annual meeting)
Richard Feynman
“When we get to the very, very small world – say
circuits of seven atoms - we have a lot of new
things that would happen that represent completely
new opportunities for design. Atoms on a small
scale behave like nothing on a large scale, for they
satisfy the laws of quantum mechanics…”
The Golden Rules
of Quantum Mechanics
1. Quantum objects are waves and can be in
states of superposition……
|1
“quantum bit”:
a|0 + b|1
|0
2. …… as long as you don’t look!
|0
a|0 + b|1
or
|1
quantum measurement  flipping a coin
Michigan
A quantum computer hosts quantum bits
which can store superpositions of 0 and 1
classical bit: 0 or 1
quantum bit: a|0 + b|1
Examples of “qubits”
photons
V
N
particle
spins
hn
H
atoms
S
S
N
Benioff (1980)
Feynman (1982)
GOOD NEWS…
quantum parallel processing on 2N inputs
Example: N=3 qubits
f(x)
 = a 0 |000 + a 1 |001 + a 2 |010 + a 3 |011
+a 4 |100 + a 5 |101 + a 6 |110 + a 7 |111
…BAD NEWS…
Measurement gives random result
e.g.,   |101
f(x)
…GOOD NEWS!
quantum interference
quantum
logic
gates
depends on
all inputs
(But ask your
question carefully)
Some quantum logic gates:
quantum |0  |0 + |1
NOT gate: |1  |1 - |0
|0 |0  |0 |0
quantum |0 |1  |0 |1
XOR gate: |1 |0  |1 |1
|1 |1  |1 |0
“Classical” NOT
01
10
e.g., (|0 + |1)|0  |0|0 + |1|1
superposition  entanglement
Quantum Entanglement:
Einstein’s “Spooky action-at-a-distance”
“superposition”
or
“entangled superposition”
or
Schrodinger cat “experiment”
see E. Schrödinger (1935)
Quantum object - Radioactive particle.
50% probability of decay in 1 hour.
Decay causes vial of cyanide to be broken
Classical object:
cat
Can the cat be alive and
dead at the same time?
Schrodinger cat
McEvoy & Zarate
Deutsch (1985)
Shor (1994) fast number factoring
Grover (1996) fast database search
# articles on “Quantum Information” or “Quantum Computing”
500
400
300
200
Nature
Science
Phys. Rev. Lett.
Phys. Rev.
100
0
…….
Quantum computer hardware requirements
1. Must make states like
|000…0 + |111…1
2. Must measure state
with high efficiency
• strong coupling
to environment
• strong coupling between qubits
• weak coupling to environment
(can’t look!)
Electromagnetically Trapped Atoms
0.3 mm
Ions
Lightning
Neutral
Positively charged ion
(missing an electron)
Demo – Tesla coil
Ion trapping basics
Applied voltages generate
trapping electric fields
V
RF
atomic
beam
e-
Trap electrodes
photon-counting
camera (or PMT)
resonant
light
Trapping charged ions with electric force fields.
Constant fields won’t work!
The electric field “fluid” will always squirt out in some direction
pushing the ion away.
One solution: Dynamic (time changing) fields!
Demo – rotating saddle movie
|1
|0
2 mm
2 cadmium ions
Cd+
dc
rf
dc
dc
rf
dc
“Perfect” quantum measurement of a single atom
state |1
state |0
laser
laser
atom fluoresces 108 photons/sec
atom remains dark
Laser
Atom radio in tune with
laser radio station
Atom radio not tuned to
laser radio station
Coherent transitions between |0 and |1
LASER
|0
|0 + |1
|1
………
Coherent transitions between 0 and 1
in a single 111Cd+ qubit
t
|0 + |1
Data taken with
a single ion
1
Prob(1)
|0
0.5
averaged
data
|1
0
0
100
200
t (ms)
300
400
The invisible forces between ion qubits
….are the “wires” connecting them
40Ca+
Collective
vibrations
of the
ion crystal
Demo – coupled pendula
(R. Blatt, Univ. Innsbruck)
Collective motion: the “quantum data bus”
state of motion
|rest
|0
|0 + |1
|0
|0
|1
laser
|rest + |moving
|0
|0
|0
|0
|1
Trapped Ion Quantum Computer
laser cool
to rest
j
k
map jth qubit to
collective motion
laser
j
k
flip kth qubit if
collective motion
laser
j
k
map collective motion
back to jth qubit
laser
Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)
Boris Blinov
ANN ARBOR MICHIGAN
First direct observation
of entanglement
between a single atom
and single photon.
Michigan 2004
Four ion-qubit
quantum logic gate
NIST 2000
Deterministic
quantum teleportation
3 ion-qubit expt.
NIST, Innsbruck 2004
High Fidelity Cadmium Quantum Computing
Schrodinger’s other cat
Cd+ quantum bits
Cadmium
~40nm
|0
|1
  0 here  1 there
Kathy-Anne Brickman,
Louis Deslauriers,
Patty Lee
PCH
“Tee” junction
Winfried Hensinger
Mark Acton
Dave Hucul
Rudy Kohn
Dan Stick
entangle
shuttle
400 microns
entangle
“Quantum
Pentium” ….
Dan Stick
Martin Madsen
Winfried Hensinger
Keith Schwab (LPS/UMd)
6mm
40mm
Andrew Cross, Ike Chuang (MIT)
A “quantum modem” linking quantum computers
coincident
photon
detection
BS
Ypsilanti
Ann Arbor
Remote ion-ion entanglement
B. B. Blinov, D. L. Moehring,
L.-M. Duan, and C. Monroe,
Nature 428, 153 (2004)
PI: Chris Monroe
Postdocs: Boris Blinov, Paul
Haljan, Winfried Hensinger
Graduate students: Mark
Acton, Kathy-Anne Brickman,
Louis Deslauriers, Patty Lee,
Jie Li, Martin Madsen, David
Moehring, and Daniel Stick.
Not Shown: Steve Olmschenk
Undergraduate students:
David Hucul, Rudy Kohn Jr.
Not Shown: Mark Yeo
http://iontrap.physics.lsa.umich.edu/
Thanks!
Prof. Tim Chupp
Prof. Chris Monroe
Prof. Jens Zorn
Jeremy Herr
Kate Logan
Angie Milliken
Carol Rabuck
Kathy Richards
Mark Kennedy
Warren Smith
Harminder Singh Sandhu