Transcript Slide 1
A close up of the spinning nucleus S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden, Germany How is the nucleus rotating? Nucleons are not on fixed positions. What is rotating? Bohr and Mottelson The nuclear surface Collective model accounts for the appearance of rotational bands E I(I+1), Alaga rules for e.m. transitions and many more phenomena. 2 Decay+detector HI+small arrays Nucleonic orbitals – gyroscopes HI+large arrays Collective rotation Interplay between collective and sp. degrees of freedom 3 Spinning clockwork of gyroscopes Aspects of the close up • How does orientation come about? • How is angular momentum generated? • Examples: magnetic rotation, band termination and recurrence • Weak symmetry breaking at high spin • Examples: reflection asymmetry, chirality 4 How does orientation come about? Deformed density / potential Orientation of the gyroscopes Deformed potential aligns the partially filled orbitals Partially filled orbitals are highly tropic 1.0 overlap 0.8 0.6 0.4 Nuclus is oriented – rotational band 0.2 Well deformed 174 Hf 0.0 -90 0 90 180 270 5 How is angular momentum generated? HCl Moving masses or currents in a liquid are not too useful concepts rigid irrotational Myth: Without pairing the nucleus rotates like a rigid body. 6 Angular momentum is generated by alignment of the spin of the orbitals with the rotational axis Gradual – rotational band Abrupt – band crossing, no bands Moments of inertia for I>20 (no pairing) differ strongly from rigid body value Microscopic cranking Calculations do well in reproducing the moments of inertia. With and without pairing. M. A. Deleplanque et al. Phys. Rev. C69, 044309 (2004) 7 Magnetic Rotation 1.0 overlap 0.8 0.6 0.4 0.2 0.0 -90 0 90 180 270 Weakly deformed 199 Pb 8 The shears effect TAC Long transverse magnetic dipole vectors, strong B(M1) 9 Better data needed for studying interplay between shape of potential and orientation of orbitals. Qt qi1 3/ 2 qh9 / 2 qi123/ 2 10 Terminating bands A. Afanasjev et al. Phys. Rep. 322, 1 (99) Deformed density / potential Orientation of the gyroscopes 11 Instability after termination M. Riley E. S..Paul et al. @Gammasphere termination Calculations: I. Ragnarsson Coexistence of sd, hd, with wd 12 After termination, several alignments, substantial rearrangement of orbitals instability new shape, bands Symmetries at high spin Determine the parity-spin-multiplicity sequence of the bands Combination of Shape (time even) With Angular momentum (time odd) 13 223 Th Tilted reflection asymmetric nucleus 2 E-0.0074I [MeV] Parity doubling 0.08 0.06 0.04 0.02 0.00 -0.02 -0.04 -0.06 -0.08 223 Th <60keV erpp(+,+) ermp(-,+) erpm(+,-) ermm(-,-) 4 6 8 10 I 12 14 Best case of reflection asymmetry. Must be better studied! 16 14 Good simplex S Rz ( ) P 1 S | e i | simplex parit y ( ) I Several examples in mass 230 region Substantial staggering 15 Weak reflection symmetry breaking Driven by rotation S=(E--E+)[MeV] 0.8 0.6 240 0.4 222 Pu Staggering Parameter S Th 0.2 226 Th 0.0 0 5 10 15 20 25 30 35 I Changes sign! 16 Condensation of non-rotating vs. rotating octupole phonons 1.0 n=3 0.8 0.6 E'n-E'0 0.4 n=2 j=3 phonon condensation n=1 0.2 0.0 n=0 -0.2 ph rot c -0.4 0.00 Angular momentum 0.05 0.10 0.15 rotational frequency + rot ph vib / 3 j=0 phonon j=3 phonon 17 harmonic (non-interacting) phonons 220 3.0 2.5 2.0 E0 E1 E2 E3 1.5 E c Ra Data: J.F.Smith et al.PRL 75, 1050(95) Plot :R. Jolos, Brentano PRC 60, 064317 (99) n=3 1.0 n=2 0.5 0.0 n=1 n=0 0 5 10 15 20 I an harmonic (interacting) phonons 3.0 2.5 Ea Eb Ec Ed E 2.0 0-2 1.5 n=3 1.0 n=2 exp n=1 0.5 0.0 1-3 n=0 0 5 10 I 15 20 18 0.8 _ 240 Pu + 2.5 226 1.7 3.0 222 0.1 Th S=(E--E+)[MeV] I 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 0.0 240 0.4 222 Pu Th 0.2 226 Th 0.0 Th 0.2 0.6 0.3 0 5 10 15 [MeV] Rotating octupole does not completely lock to the rotating quadrupole. 20 I + 25 30 35 rot ph rot - 19 1.0 n=3 0.8 0.6 E'n-E'0 0.4 n=2 j=3 phonon condensation n=1 0.2 0.0 n=0 -0.2 -0.4 0.00 0.05 0.10 0.15 X. Wang, R.V.F. Janssens, I. Wiedenhoever et al. to be published. Preliminary 20 Chirality Consequence of chirality: Two identical rotational bands. 21 band 2 134Pr h11/2 h11/2 band 1 K. Starosta et al. Results of the Gammasphere GS2K009 experiment. Come as close as 20keV Strong Transitions 2 -> 1 22 Soft chiral vibrations Shape Unharmonicites Must be even, because symmetry is spontaneously broken Microscopic RPA calculations (D. Almehed’s talk) Decreasing energy (about 2 units of alignment) Strong transitions 2->1, weak 1->2 Tiny interaction between 0 and 1 phonon states (<20 keV) Systematic appearance of sister bands Difficult to explain otherwise. 32 Triaxial Rotor with microscopic moments of inertia Rigid shape IBFFM Soft shape A. Tonev et al. PRL 96, 052501 (2006) Q /Q 2 0 t 1 t C. Petrache et al. PRL 24 Transition Quadrupole moment 1.5 1.25 Q2 1 larger 0.75 smaller 0.5 0.25 0 0 0.25 0.5 0.75 1 1.25 Q2 0 1.5 30o , deformsfor other 25 Summary • Close up refined our concept of how nuclei are rotating: assembly of gyroscopes • Rich and unexpected response as compared to non-nuclear systems • Rotation driven crossover between different discrete symmetries resolved • Chirality of rotating nuclei appears as a soft an harmonic vibration 26 Congratulations! 27 Loss and onset of orientation Geometrical picture vs. TAC Chiral vibrator Harmonic approximation Frozen alignment H A1 ( J1 j ) 2 A3 ( J 3 j ) 2 A2 J 22 1/ 2 2 j I J1 W 1 1 J1 J 2 j 2 1 Ai I I 1/ 2 2 Ji J2 J1 J Full triaxial rotor + particle + hole (frozen) 26 24 22 20 18 16 14 12 10 8 6 4 2 0 jp,jn frozen =30 o chiral rotor chiral vibrator om1 om2 0.0 0.2 0.4 0.6 0.8 [MeV] 1.0 1.2 1.4 [8] K. Starosta et al., Physical Review Letters 86, 971 (2001) 600 134Pr - a chiral vibrator, which does not make it. E2E1TPR(J-TAC) E2E1exp 500 400 E2-E1[keV] 134 Pr 300 200 Calculation: Triaxial rotor with Cranking MoI +particle+hole 100 V<25keV 0 -100 -200 8 10 12 14 16 18 20 134 Pr J J I 24 22 20 18 16 14 12 10 8 6 4 2 0 om1e om2e om1o om2o Experiment 0 100 200 300 400 [kEV] 500 600 24 22 20 18 16 14 12 10 8 6 4 2 0 om1e om2e om1o om2o 134 Pr TPR (J-TAC) 0 100 200 300 400 [keV] 500 600 jh J jp Frozen alignment jh Coupling to particles jh J J jp jp Additional alignment Tiny interaction between states! 600 E2E1TPR(J-TAC) E2E1exp 500 112 400 E2-E1[keV] 134 Pr 300 Ru | V | 18keV 200 104 100 V<25keV 0 Rh | V | 1keV -100 -200 8 10 12 14 16 18 20 I 134 Pr | V | 25keV ( 17keV ) But strong cross talk!!?? Rs ( ) 1 Rl ( ) jh jp R 4 irreducible representations of group D2 h 2 belong to even I and 2 to odd I. For each I, one is 0-phonon and one is 1-phonon. The 1-phonon goes below the 0-phonon!!! Ri ( ) 0.6 2.0 BE2so11 BE2so12 BE2so21 BE2so22 0.3 1.6 2 B(M1,I->I-1)[N ] 2 B(E2,I->I-2)[eb ] 0.4 TPR(J-TAC) vib rot 1.8 TPR(J-TAC) 0.5 vib rot 0.2 0.1 1.4 1.2 BM1o11 BM1o12 BM1021 BM1o22 1.0 0.8 0.6 0.4 0.2 0.0 8 10 Strong interband 12 14 I 16 18 20 0.0 8 10 12 14 I 16 18 20 Evidence for chiral vibration Two close bands, same dynamic MoI, 1-2 units difference in alignment Cross over of the two bands (Intermediate MoI maximal) Almost no interaction between bands 1 and 2 (manifestation of D_2) Strong decay 2->1 weak decay 1->2 . Problem: different inband B(E2) Coupling to deformation degrees of freedom seems important Do not cross Conclusions • So far no static chirality – look at TSD • Evidence for dynamic chirality • Chiral vibrators exotic: One phonon crosses zero phonon • Coupling to deformation degrees Moment of inertia has the rigid body value velocityfield v L (r) j(r) / m (r) in body fixed frame v B (r) v L (r ) e x r generated by the p-orbitals Deformed harmonic oscillator N=Z=4 (equilibrium shape) Moments of inertia for I>20 M. A. Deleplanque et al. Phys. Rev. C69, 044309 (2004) rotational alignment Backbends K-isomers Combination of many orbitals -> classical periodic orbits Velocity field in body fixed frame of unpaired N=94 nuclides