Transcript Slide 1

From ferromagnetic to non-magnetic semiconductor spintronics: Spin-injection Hall effect

Tomas Jungwirth

Institute of Physics ASCR

Jairo Sinova, Karel Výborný, Jan Zemen, Jan Ma šek, Alexander Shick, František Máca, Jorg Wunderlich, Vít Novák, Kamil Olejník, et al.

Hitachi Cambridge, Univ. Cambridge

Jorg Wunderlich, Andrew Irvine, Byonguk Park, et al.

University of Nottingham

Bryan Gallagher, Richard Campion, Kevin Edmonds, Andrew Rushforth, et al.

Texas A&M University

Jairo Sinova, Liviu Zarbo, et al.

AMR and GMR (TMR) sensors: dawn of spintronics Inductive read elements Magnetoresistive read elements

1980’s-1990’s

Ferromagnetism & spin-orbit coupling

anisotropic magnetoresistance

~ 1% MR effect

Ferromagnetism only

giant (tunnel) magnetoresistance

~ 100% MR effect

magnetization current

Lord Kelvin 1857 Fert, Grunberg et al. 1988

Renewed interest in SO induced MRs in ferromagnetic semiconductors

Ohno Science ’98

~ 1000% MR effect & gate controlled

Wunderlich et al. PRL ’06 Schlapps et al. PRB `09

Coulomb blockade AMR: likely the most sensitive spintronic transistors to date p- or n-type FET depending on magnetization

non-volatile programmable logic, etc.

SO induced MRs: AMR & anomalous Hall effect

Ordinary Hall effect

: response in normal metals to external magnetic field via Lorentz force Hall 1879

B

_ F L

I

Anomalous Hal effect

: response to internal spin polarization in ferromagnets via spin-orbit coupling Hall 1881

M

F SO

I V V

T c in (Ga,Mn)As upto ~190 K but AHE survives and dominates HE far above T c OHE AHE

Ruzmetov et al. PRB ’04

(Ga,Mn)As: simple band structure of the host SC j=3/2 HH

HH & LH Fermi surfaces

Quantitative AHE theory

Jungwirth et al. PRL ’02

Spherical HH Kohn-Luttinger 3D model  Rashba and Dresselhaus 2D models

Intense theory research of AHE in model 2D R&D systems

H SO

 1

mc

2

S

 

e v

  

E Nagaosa et al RMP ‘’09 in press (arXiv:0904.4154)

Taming spins in non-magnetic materials: spin-Hall effect

Ordinary Hall effect

: response in normal metals to external magnetic field via classical Lorentz force Hall 1879

B

_ F L

I

Anomalous Hal effect

: response to internal spin polarization in ferromagnets via quantum-relativistic spin-orbit coupling Hall 1881

F SO

M I V V Spin Hall effect spin-dependent deflection  transverse edge spin polarization

F SO _ F SO

Wunderlich et al. arXives ’04 (PRL ’05) Kato et al. Science ’04

I

||

E

Polarized EL from a planar LED Theory and experiment: ~10% polarization over ~10nm wide edge region

More taming of spins by spin-orbit coupling

Spin-injection from a ferromagnet

Wunderlich et al. Nature Phys.‘09

 +

More taming of spins by spin-orbit coupling

Spin-injection by incident circularly polarized light

Wunderlich et al. Nature Phys.‘09

More taming of spins by spin-orbit coupling

Spin-injection Hall effect  +

+ + + – – –

Spin-dependent deflection due to spin-orbit coupling

Wunderlich et al. Nature Phys.‘09

More taming of spins by spin-orbit coupling

Spin-injection Hall effect  +

+ + + + + + + + + + + + – – – – – – – – – – – –

Spin-dependent deflection due to spin-orbit coupling  transverse (Hall)

electrical voltage

in steady state

Wunderlich et al. Nature Phys.‘09

More taming of spins by spin-orbit coupling

Spin-injection Hall effect  +

+ + – – – – + + –

Built-in electric fields in SC structure  another spin-orbit coupling effect which can lead to

spin precession

Hall voltages measure

local spin orientation

+ +

Bernevig et al., PRL`06, Wunderlich et al. Nature Phys.‘09

More taming of spins by spin-orbit coupling

Spin-injection Hall effect  +

+ + – – + + – – + + – –

Built-in electric fields in SC structure can be modified by external

gate voltage

Hall signals changed by gate  transverse-voltage

spintronic transistor

Bernevig et al., PRL`06, Wunderlich et al. Nature Phys.‘09

 +

More taming of spins by spin-orbit coupling

Spin-injection Hall effect

V G

+ + – – + + – – + + – – + + – – + + – –

Built-in electric fields in SC structure can be modified by external

gate voltage

Hall signals changed by gate  transverse-voltage

spintronic transistor

Bernevig et al., PRL`06, Wunderlich et al. Nature Phys.‘09

Optical injection of spin-polarized charge currents into Hall bars

GaAs/AlGaAs planar 2DEG-2DHG photovoltaic cell

e V H e e e e e h h h h h h

2DEG 2DHG

V b 2DHG 2DEG

h h

Optical spin-generation area near the p-n junction

Simulated band-profile

V H2 V L

p-n junction bulit-in potential (depletion length ) ~ 100 nm  self-focusing of the generation area of counter-propagating e and h + Hall probes further than 1  m from the p-n junction  safely outside the spin-generation area and/or masked Hall probes

Experimental observation of the SIHE

SIHE linear in degree of polarization and spatially varying

Spin dynamics in Rashba&Dresselhaus SO-couped 2DEG

H

2DEG

  2

k

2 2

m

  

k y

x

k x

y

 

k x

x

k y

y

  > 0,  = 0  = 0,  < 0

k-

dependent SO field  strong precession & spin-decoherence due to scattering

[110]

No decoherence for

|

| = |

| & channel

SO field

L

[ 1  10 ]   4  

k

[ 1  10 ]

t k

[ 1  10 ]

t

/ / 

m Bernevig et al PRL’06

[1-10]

Diffusive spin dynamics & Hall effect due to skew scattering

H

2DEG   2

k

2 2

m

  

k y

x

k x

y

 

k x

x

k y

y

   *    (

k

   V dis (

r

 )) precession-length (~1  m) >> mean-free-path (~10 nm) 

H

(

x

[ 1 1 0 ] )  2  *

e

n i

n p z

(

x

[ 1 1 0 ] )

p Z

(

x

[ 1 1 0 ] )  exp[

q x

[ 1 1 0 ] ]

q

 |

q

| exp(

i

 ) , |

q

|  ( ~

L

1 2 ~

L

2 2  ~

L

2 4 ) 1 4   ~

L

1 / 2 1 2  arctan 2

m

|    ~

L

2 1 ~

L

2 2 ~

L

2  2   |  ~

L

1 2 ~

L

1 4 2  2 4  

Conclusions

SIHE: high-T SO only spintronics in non-magnetic systems  Basic studies of spin-charge dynamics and Hall effect in non-magnetic systems with SO coupling  Spin-photovoltaic cell: polarimeter on a SC chip requiring no magnetic elements, external magnetic field, or bias; unconventional laser displacement sensor with the resolution defined by the spin-precession length built in the SC 

SIHE can be tuned electrically by external gate and combined with electrical spin injection from a ferromagnet (e.g. Fe/Ga(Mn)As structures)

SIHE vs other spin-detection tools in semiconductors

Crooker et al. JAP’07, others

Magneto-optical imaging

 non-destructive  lacks nano-scale resolution and only an optical lab tool

Ohno et al. Nature’99, others

 

MR Ferromagnet

electrical  requires semiconductor/magnet hybrid design & B-field to orient the FM  

spin-LED

all-semiconductor  requires further conversion of emitted light to electrical signal

Spin-injection Hall effect

    non-destructive electrical 100-10nm resolution with current lithography

in situ

directly along the SC channel & all-SC requiring no magnetic elements in the structure or B-field