SENSIBILITA’ DEL TELESCOPIO ANTARES PER NEUTRINI IN

Download Report

Transcript SENSIBILITA’ DEL TELESCOPIO ANTARES PER NEUTRINI IN

Neutrino oscillations and astrophysical fluxes
solar CHOOZ (reactor)
s 0   0.82 0.57
0 
 c

 

U    sx cx x     0.4 0.58 1 2 
 sx  cx x   0.4  0.58 1 2 

 

atmospheric
For astrophysical sources L>kpc :
Δm2 L/2E » 1
\
e


e
60%
20%
20%

20%
40%
40%

20%
40%
40%
c = cosθsol, s = sinθsol, θsol~35o
x = sinθatm = cosθatm, θatm ~ 450
Δmatm=2.5 10-3 eV2, Δmsol=710-5 eV2
P        U  ,iU  ,iU  , jU  , j e
*
*
 i mi2, j L 2 E
i, j
2
2
PP
   
U
U
2

,
i

,i|2 | U

|
U
|


 i
 ,i
 ,i
p
Beam dump when all s decay:
i
0
5
φνe : φνμ : φντ  1 : 2 : 10
P e     0.822  0.42  0.572  0.582  20%
Other scenarios: neutron decay
 e  0.6 e  0.2   0.2  e
at Earth
 0.6 e  0.2   0.2 
Teresa Montaruli, 5 - 7 Apr. 2005


 
e  e
 e 
Neutrino production: top down
Decay of neutrons in sources
Decay or annihilation of supermassive relic of Big Bang 1024 eV = 1015 GeV
~ MGUT (monopoles, topological defects, vibrating strings…)
Resonant UHE neutrino interactions on relic neutrinos (Z-bursts)
Gelmini et al, PRD70, 2004
Can explain EHECR
Guaranteed neutrinos: GZK s
UHECR produce s s
s from CR interactions in the
Galactic plane
Teresa Montaruli, 5 - 7 Apr. 2005
The Galactic Plane
Radio continuum
Infrared Neutrinos
Near Infrared
Optical
X-Ray
Gamma Ray
408 MHz – Bonn, Jodrell Banks & Parks
Teresa Montaruli, 5 - 7 Apr. 2005
COBE / DIRBE
ANTARES ?
COBE / DIRBE
Photomosaic - Lausten et al.
0.25, 0.75, 1.5 keV – ROSAT / PSPC
>100 MeV – CGRO / EGRET
The Galaxy
Halo
Theorical hypothesis
Equilibrium between CR, B and ISM.
Propagation
Electromagnetic interactions
Sun
Ring + bar
• Energy losses
Bulge
• Diffusion on magnetic field and
galactic winds
Galactic center
• Reacceleration
spiral arms
• Decays
• Spallation
•Neutrinos from pp collisions
Galactic plane
~ 1 kpc
Sun
8.5 kpc
Halo
1 – 20 kpc
15 – 20 kpc
1 pc = 3.3 ly
Teresa Montaruli, 5 - 7 Apr. 2005
 observations



EGRET observed a diffuse emission 100MeV-10 GeV from Galactic Centre
region (300 pc): excess > factor 10 around 1 GeV
INTEGRAL: resolved 91 point sources. 90% of ‘diffuse’ flux can be due to
point sources <100 keV
Milagro: discovery of TeV emission (astr-ph/0502303)
4.5s excess from |b|<5˚ and l[40˚,100˚]
Covered pond with 2 layers of PMTs, from relative timing 0.75˚ shower direction
resolution, gamma-hadron discrimination based on shape of Cherenkov light
emitted by showers
F
(>1TeV)=5.1 ·10-10 cm-2 s-1 sr-1
Milagro
Steeper than EGRET alone 2.51 0.05
2.61±0.07
Teresa Montaruli, 5 - 7 Apr. 2005
 observations
Extreme models  =-(2.4-2.9) (hard electron disfavoured)
s follow primary spectrum ( decay dominates over interactions)
New model in Strong, Moskalenko, and Reimer, astro-ph/0406254
INTEGRAL: flux from point sources
red =  from 0
Teresa Montaruli, 5 - 7 Apr. 2005 Figure:
Strong, Moskalenko, and Reimer, astro-ph/0406254
Extreme Models
Hard electron model E
Hard nucleus model
-2.9
E-2.4
γ=2.4
γ=2.94
GeV
GeV
TeV
Model HEMN
TeV
Model HN
For
E-2.4
20 years of ANTARES to
have 88% discovery prob
d ( E )
 A.E 
dE
Teresa Montaruli, 5 - 7 Apr. 2005
Gamma from π0
Nu mu + anti nu mu
Galactic Centre
High matter density and activity
 compact radio source Sgr A* possibly associated to black hole ~3 106 Msun in
the center
HESS TeV- spectrum in
 Sgr A East SNR
disagreement with the other
experiments Variability?
HESS (6.1s 4.7h/9.2 s 11.8 h)
localization? HESS 1 arcmin
around Sgr A*

68%
95%
Sgr A*
Sgr A East
Chandra & Radio
Teresa Montaruli, 5 - 7 Apr. 2005
astro-ph/0408145
High Energy Stereoscopic System
Four 12 m diameter telescopes running since ~ 1yr in Namibia
Eth  100 GeV
(16 in the future?)
Cherenkov light is emitted by showers induced by high-energy gamma rays This light is
very faint - about 10 s/m2 at E=100 GeV - and the duration of the light flash is only a
few nsec. Large mirrors, fast photon detectors and short signal-integration times are
required to collect enough light from the shower, with minimal contamination from nightsky background light.
 direction < 0.1
Galactic point Sources
The case of RXJ1713.7-3946
Open problem: elusive 0 produced in accelerated nuclei collisions with
SN ambient material. Still not a clear evidence BUT…CANGAROO claim
Enomoto et al, Nature 2002
0
Controversial
Reimer et al., A&A390,2002
Incompatible with EGRET
RXJ1713.7-3946
No cut-off in the HE tail of HESS spectrum favors 0 decay scenario
respect to the case of em processes
Study of electron density and B can help
H.E.S.S.: full
remnant
CANGAROO: hotspot
Index 2.2±0.07±0.1
Index
2.84±0.15±0.20
preliminary
NB
CANGAROO measures
the spectrum for the NW
part of the rim, HESS for
the entire region
RXJ1713.7-3946
Seen by HESS
Microquasars
Galactic X-ray binaries with radio relativistic jets
Their structure make them similar to quasars but ~106 times smaller
Most have bursting activity (hrs-days)
Persistent: SS433 GX339-4
Neutrinos from p- interactions
(photons from synchr. emission
of electrons accelerated in jet or
from accretion disc)





Ljet : jet kinetic power (erg/s)
δ : jet Doppler factor δ= γ(1- β cosθ)
ηp : fraction of jet energy transferred to protons (~0.1)
fπ : fraction of p energy transferred pions
Teresa Montaruli, 5 - 7 Apr. 2005
D : source distance
Predictions Galactic sources
Source
Type
Distance
(kpc)
E
(GeV)
Nμ
(km-2 yr-1 )
Ref.
Supernovae
Shocks
pulsars
10
 103
 102  106
 105 108
 10  108
100
50  1000
 100  1000
 1000
Waxman & Loeb 2001
Protheroe et al. 1998
Beall & Bednarek 2002
Nagataki 2004
Plerions
0.5  4.4
Crab
2
< 103  105
 103  5·105
 103  5·105
 103  5·105
10 106
 1  12
 1
a few
1
 4  14
Guetta & Amatto 2003
Bednarek 2003
Bednarek & Protheroe 1997
Bednarek 2003
Amato et al. 2003
Shell SNRs
SNR RX J1713.7
Sgr A East
6
8
 104
 105
 40
 140
Alvarez-Muñiz & Halzen 2002
Pulsars + Clouds
Galactic Centre
Cygnus OB2
8
1.7
104 107
> 103
104  107
< 106
 2  30
a few
 0.5
4
Bednarek 2002
Torres et al. 2004
Bednarek 2003
Anchordoqui et al. 2003
Binary systems
A0535+26
2.6
3 · 102  103
a few
Anchordoqui et al. 2003
Microquasars
1  10
103 105
1  300
Distefano et al. 2002
Magnetars
3  16
Teresa Montaruli, 5 - 7 Apr. 2005
< 105
1.7 (0.1/∆Ω) (5/d2)
Zhang et al. 2003
Gamma-Ray Bursts
Vela-4 detects the 1st  emission E>0.1 MeV on July 2nd,1967
Bimodal duration distribution
BATSE (1 GRB/d, 3° error box, FoV 4 sr)
EGRET (1 GRB/yr, 10 arcmin, E>30 MeV,FoV 0.6 sr)
Isotropic Angular Distribution
long to short bursts 3:1
1 arcmin = 1/60 deg
Counting rates with time
variable from GRB to
GRB
Teresa Montaruli, 5 - 7 Apr. 2005
BATSE observations on GRBs
Spectra
 α  EE
E e 0 , E  E
0
N E E   
E β ,
E  E0
Band et al.
Parametri:
,  e E0
-1
-2
E0
E0200 keV
Teresa Montaruli, 5 - 7 Apr. 2005
Beppo-SAX and afterglows
Beppo-SAX (54 GRBs/6yrs, 5’ error box, 40-700 keV, FoV 20 ˚ 20 ˚)
Determined in 5-8 h precise GRB position thanks to detection in X (WFC)
Xray afterglow discovery: delayed emission
even after ~ 1d  optical counterparts
SN association: GRB980425-SN1998bw
GRB030329-SN2003dh position coincidence
and SN like spectrum in afterglow
Long GRBs: stellar core collapse into a BH,
accretes mass driving a relativistic jet that
penetrates the mantle and produces GRB
Controversial: observation off-axis
suppresses  flux
From optical afterglow spectrum redshift 
cosmological distance
Emitted energy (isotropic) 1054 erg
Beaming (light curve changes in slope):
q = 1/G Eobs  G Eemitted G~102-103
Eemitted~ 5 ·1050 erg
Teresa Montaruli, 5 - 7 Apr. 2005
Current and future missions
Mission
Error box
(˚)
Rate
(GRB/yr)
GLAST
<0.125
300
SWIFT
~0.004
200
HETE-2
~0.03
25
INTEGRAL
<0.2
35
Delay of satellite
data processing and
transmission+transmission
of alerts
The Gamma-ray bursts Coordinate network GCN: Distribution of alerts
Teresa Montaruli, 5 - 7 Apr. 2005
The fireball model
Compactness problem: the optical depth for pair production very high if initial energy
emitted from a volume with radius R <c dt ~300 km with dt = variability time scale ~ ms
in photons with the observed spectrum  this would imply thermal spectra contrary t
observations
Solution: relativistic motion dimension of source R <G2 c dt and Eobs = G Emitted
A fireball (, e, baryon loading <10-5 Msun to reach observed G) forms due to the high
energy density, that expands. When it becomes optically thin it emits the observed
radiation through the dissipation of particle kinetic energy into relativistic shocks
External shocks: relativistic matter runs on external medium, interstellar or wind earlier
emitted by the progenitor
Internal shocks: inner engine emits
many shells with different Lorentz
factors colliding into one another, and
thermalizing a fraction of their kinetic
energy
Teresa Montaruli, 5 - 7 Apr. 2005
Review
Active Galactic Nuclei
Rotating massive BH with jets along rotation axis with matter outflow +
accretion disc
Spectra have a thermal part due to synchrotron radiation of electrons in a
magnetic field (UV bump at optical-UV frequencies)+non thermal component
extending up to 20 orders of magnitude
explained by leptonic/hadronic models
Neutrino production in p or pp processes
VLA image of CygnusTeresa
A Montaruli, 5 - 7 Apr. 2005
Upper bounds on X-galactic fluxes
Cosmic p accelerators produce CRs, ’s and ’s
Ultimate bound of any scenario involving  and  production from s: diffuse
extra-galactic  background E2F < 6 10-7 GeV /cm2 s sr (EGRET) Measured
UHECR flux provides most restrictive limit (Waxman & Bahcall (1999)
- optically thin sources: nucleons from photohadronic interactions escape
- CR flux above the ankle (>3 ·1018eV) are extragalactic protons with E-2
spectrum  E2F < 4.5 10-8 GeV /(cm2 s sr)
This bound does not apply to harder
spectra or optically thick
Mannheim, Protheroe & Rachen (2000):
Magnetic fields and uncertainties in
photohadronic interactions of protons
can largely affect the bound as these
effects restrict number of protons
able to escape
Teresa Montaruli, 5 - 7 Apr. 2005
CR rate evolves with z
Suggested references
Halzen and Hooper, Rept.Prog.Phys.65:1025-1078,2002
 Learned and Mannheim,
Ann.Rev.Nucl.Part.Sci.50:679-749,2000
 Burgio, Bednarek, TM, New Astron. Rev. 49, 2005 (galactic
point sources)
 http://arxiv.org/PS_cache/astro-ph/pdf/0405/0405503.pdf (GRBs)
 Books: Longair, High Energy Astrophysics Berezinski, Neutrino
Astrophysics 1995
 These transparencies:

http://www.icecube.wisc.edu/~tmontaruli/
Teresa Montaruli, 5 - 7 Apr. 2005
Neutrino Detection Principle
s are weekly interacting 
require large target mass and
conversion into charged particle
Markov/ Greisen idea (1960)
( )
  N    X
Target is surrounding matter
M = r R S (E = 1 TeV : R = 2.5 km)
Events are upgoing

Teresa Montaruli, 5 - 7 Apr. 2005
Muon neutrinos
are the only topology
to allow source pointing
But since s oscillate
other topologies should
be considered that
allow to observe upper
sky
Energy losses
Ionization and atomic excitation: interactions with electrons in the media
Continuous process
mip: particles at the minimum of ionization
2 MeV/g/cm2
Radiative: discrete process and stochastic
Bremmsstrahlung: radiation emitted by an
accelerated or decelerated particle through
the field of an atomic nuclei
Energy emitted 1/m2
Pair production: +N  e+ePhotonuclear : inelastic interaction of
muons with nuclei, produces hadronic
showers
Teresa Montaruli, 5 - 7 Apr. 2005
The target mass
Ionization
Stochastic losses
~2 MeV/g/cm2 (dominate > 1TeV )
E
E
dx
1
1
R  
dE  
dE  log(1  E / Ec )
dE
a  bE
b
0
0
Ec  a / b
critical energy
rock
Pair production
photonuclear
ionization
bremsstrahlung
Upgoing muons: much larger interaction
Teresa Montaruli,
5 - 7 Apr.
2005 what is in the instrumented
volume
than
region