Bridging the Water Demand Gap: Desalination

Download Report

Transcript Bridging the Water Demand Gap: Desalination

Consultative Workshop on
Desalination and Renewable Energy
Bridging the Water Demand Gap:
Desalination
Dr. Fulya Verdier, Dr. Rudolf Baten
Fichtner GmbH & Co.KG
Muscat, Oman
22-23 February 2011
6543P07/FICHT-6981353-v1
Mena Water Outlook, Part II
Study objectives
 Identification of water gap
 Potential of solar powered desalination to bridge the gap
Study approach
 Key criteria for technology selection
 Basic features of selected desalination technologies
 Definition of typical plants
 Current water situation in the countries of the MENA region
 Expected water gap in until 2050
 Costs of desalinated water
 Potential of CSP to supply the required energy (separate presentation)
6543P07/FICHT-6981353-v1
2
Desalination & CSP
Main drivers for new desalination projects
 Extent of water gap
 Financial strength of country (e.g. % of GDP spent for desalination)
 Experience with existing desalination facilities
 Attractiveness to investors (political stability)
 Development aid
Main drivers for new CSP projects
 Peaking energy prices and undesired dependency on fossil fuel
 Limited availability of fossil fuel sources
 Reduction of carbon footprint
 Attractiveness to investors (political stability)
 Government incentives and regulations
6543P07/FICHT-6981353-v1
3
Desalination & CSP
Key considerations for desalination plants
 MED, MSF and SWRO desalination technologies are well-proven
 Significant improvements achieved (i.e. energy efficiency)
 Capital and energy intensive
 Footprint of secondary importance
Key considerations CSP plants
 CSP still in development status, including storage capacities
 Operational constraints due to limited solar radiation, back-up required
 Capital and energy intensive
 Footprint significant
 Is CSP the bottleneck?
6543P07/FICHT-6981353-v1
4
Desalination & CSP
Design constraints for desalination plants
 Desalination plants are best operated at base load mode
Design constraints for CSP plants
 Variable steam supply from CSP depending on solar irradiance (day/night)
 Fossil-fired back-up power plant
 Expensive heat storage
 Maximum live steam temperature is 370°C (compared to 480-560°C)
 Relative large footprint, especially for higher Solar Multiple (SM) Plants
 Largest CSP capacity to date ~ 100 MWe
6543P07/FICHT-6981353-v1
5
MED: Working principle of an MED unit
6543P07/FICHT-6981353-v1
6
MED: Process flow diagram of a 14 effect MED unit
6543P07/FICHT-6981353-v1
7
MED: Key design considerations (I)
Capacity
 Unit production capacity (current maxium: 38,000 m³/d)
 Number of duty / standby units
Energy demand
 Electrical energy demand (1.5 to 2.5 kWh/m³)
 Heat demand (order of magnitude: 70 kWh/m³)
 Steam demand calls for cogeneration of water and power
Temperature profile
 Temperature of heating steam (upper process temperature)
 Seawater temperature (lower process temperature)
 Number of effects (performance ratio)
6543P07/FICHT-6981353-v1
8
MED: Key design considerations (II)
Durability
 Plant availability and service time
 Material selection (e.g. Titanium tubes in top rows and alu brass tubes in
below rows)
Operational features
 Robust in regard to seawater salinity and bio-fouling potential
 High distillate quality
Supplier market
 Major MED Suppliers: SIDEM (Veolia); others are following
6543P07/FICHT-6981353-v1
9
MED: One of 12 Fujairah F2 IWPP 38,640 m³/d MED Units
6543P07/FICHT-6981353-v1
10
SWRO: Working principle of a spiral wound module
Feed at high
pressure (100%)
Concentrate at
high pressure
( ≈ 60%)
Permeate at
low pressure (≈ 40%)
Source: Dr.ir. S.G.J. Heijman, nanofiltration and reverse osmosis,
6543P07/FICHT-6981353-v1
http://ocw.tudelft.nl/fileadmin/ocw/courses/DrinkingWaterTreatment1/res00053/embedded/
!4e616e6f66696c74726174696f6e20616e642072657665727365206f736d6f736973.pdf, accessed on 20110218
11
SWRO: RO section of the Singapore 136,000 m³/d Plant
6543P07/FICHT-6981353-v1
12
SWRO: Key design considerations (I)
Operational features
 Large membrane area and narrow flow cross section cause
susceptibility to bio-fouling
 Pre-treatment process to be adopted to the seawater conditions
 Seawater salinity and temperature affect the power demand
 No perfect salt rejection – usually a second pass required
Energy
 Electrical energy demand (order of magnitude: 4 kWh/m³)
 Absence of heat demand allows for stand alone configuration
 Method of energy recovery (Pelton turbine, turbocharger or isobaric system)
6543P07/FICHT-6981353-v1
13
SWRO: Key design considerations (II)
Capacity and plant design
 Plant capacity (current maximum: 500,000 m³/d)
 Modularity allows a high number of process configurations (e.g. train or
centre design)
Durability
 Plant availability and service time
 Material selection (e.g. super duplex for high pressure section)
Supplier market
 Major Suppliers: Befesa, Cobra/Tedagua, Degremont (Suez), GE, Hyflux,
IDE, OTV (Veolia)
6543P07/FICHT-6981353-v1
14
SWRO: Flow diagram of a typical SWRO process
Source: Victorian Desalination Project
6543P07/FICHT-6981353-v1
15
SWRO: Artists view of the Hamma (Algeria) 200,000 m³/d plant
Source: IDA Yearbook 2008 - 2009
6543P07/FICHT-6981353-v1
16
Desalination Market
Cumulative capacity put online in and outside the GCC countries
16
Capacity put online (cumulative)
[Million m³/d]
14
MSF in GCC Countries
MSF in non GCC Countries
12
MED in GCC Countries
MED in non GCC Countries
10
SWRO in GCC Countries
8
SWRO in non GCC Countries
6
4
2
0
1950
6543P07/FICHT-6981353-v1
1960
1970
1980
Year
1990
2000
2010
17
Desalination Market
Online Desalination Capacity sorted by technology and daily capacity
8
Total Online Capacity
[Million m³/d]
7
6
5
4
3
2
1
0
MED
MSF
SWRO
GCC Countries
< 5 000 m³/d
6543P07/FICHT-6981353-v1
5 000 m³/d - 20 000 m³/d
MED
MSF
SWRO
Non GCC Countries
20 000 m³/d - 100 000 m³/d
> 100 000 m³/d
18
Desalination Market
Forecast Contracted Capacity by Technology (2006-2016)
6543P07/FICHT-6981353-v1
19
Desalination Market
Additional Desalination Capacity (2008-2016), 12 MENA countries in TOP 20 !
6543P07/FICHT-6981353-v1
20
Study Approach
Desalination & CSP Potential Assessment
DATA
Water Demand &
Availability
TECHNOLOGY
Solar & Land
Assessment
Desalination
Installed Capacities
+
CSP
Water
Power
TYPICAL PLANTS
=> Number & Location in MENA Region
Potential
Desalination
CSP
6543P07/FICHT-6981353-v1
21
Desalinated Water-Share in MENA
Water Resources and Water Withdrawals (1960-2010)
Kuwait
UAE
Qatar
Yemen
Libya
Saudi Arabia
Malta
Bahrain
Water scarcity
1000 m³/cap/yr
Jordan
Total renewable per capita (actual) (m3/cap/yr)
Israel
Total water withdrawal (without desalination) per
capita (m3/cap/yr)
Algeria
Djibouti
Total desalinated water withdrawal (m3/cap/yr)
Tunisia
Oman
Egypt
Syria
Morocco
Lebanon
Iran
Iraq
0
500
1000
1500
2000
2500
3000
Source: FAO: Aquastat
6543P07/FICHT-6981353-v1
22
Technology Screening
6543P07/FICHT-6981353-v1
23
Plant Configurations
 Dual-purpose plant (MED-CSP) located at coast with seawater cooling
 Stand-alone plant with RO located at coast and CSP located in inland with
air cooling
Source: DLR, 2007
6543P07/FICHT-6981353-v1
24
Key Study Features
Seawater Quality
Desalination Process
Product Water Quality
3 macro-regions
MED / SWRO
TDS < 200 mg/l
MED
Gulf
SWRO
Potable
LARGE
200,000 m³/d
Industrial
MEDIUM
100,000 m³/d
Irrigation
Red Sea
Mediterranean
MEDIUM
100,000 m³/d
SMALL
20,000 m³/d
Increasing seawater TDS & temp.
6543P07/FICHT-6981353-v1
25
MED Typical Plant Design
“Plain” MED Plant Basic Design
Plant design parameters
Dimension
Data
m3/d
100,000
%
94
Number of units
No.
3
Unit capacity net
m3/d
33,333
%
18
kg/2326 kJ
11.7 (1)
Effects / unit
No.
14
Seawater design temperature
°C
28
Steam pressure
bar
0.35
Steam temperature
°C
~ 73
Net output capacity
Average annual availability
Recovery
Performance Ratio
Steam conditions
(1)
Considering potential future developments
6543P07/FICHT-6981353-v1
26
MED Typical Plant Requirements
Energy requirement
(1)
(2)
MED Plant
Capacity [m³/d]
Electrical Energy
Demand
[kWh/m³]
Electrical Equivalent for
Heat Demand
[kWh/m³ distillate]
100,000
1.55 (1)
[ 4.25 - 4.75 ] (2)
Including seawater pumping, evaporation, post-treatment without potable water pumping
Based on seawater at 28°C and final condensation at 38°C
Area requirement
MED Plant
Capacity [m³/d]
Area Requirement
[ha]
100,000
1.5
6543P07/FICHT-6981353-v1
27
MED Typical Plants
Fujairah F2 MED SWRO Hybrid Plant, UAE 464,600 m³/d
6543P07/FICHT-6981353-v1
Source: SIDEM
28
SWRO Typical Plant Design
SWRO Plant Basic Design
Net output capacity
m³/d
100,000
%
94
Number of passes
No.
2
Second pass capacity control
Type
Split partial configuration in 1st pass
Energy recovery system
Type
Isobaric (Pressure Exchanger)
Average annual availability
1st pass RO
2nd pass RO
%
40
90
Type of membranes
Type
SW standard
membrane
R = 98%
BW high boron
rejection, caustic
soda dosing
Average membrane flux
l/m2,h
13 - 14
33 - 37
Average annual membrane
replacement rate
%/y
15
12
Recovery
6543P07/FICHT-6981353-v1
29
SWRO Typical Plant: Energy Requirement
Region
@ selected seawater
design parameters
Mediterranean Sea &
Atlantic Ocean
@ TDS 39,000 mg/l &
15-30 °C
Red Sea &
Indian Ocean
@ TDS 43,000 mg/l &
20-35 °C
Arabian Gulf
@ TDS 46,000 mg/l &
20-35 °C
6543P07/FICHT-6981353-v1
Pre-treatment
Specific Energy
Consumption1
[kWh/m³]
FF1
3.5
MF / UF
4.0
Beach wells /
sand filters
3.8 – 3.9
FF1
3.7 – 3.8
Beach wells /
sand filters
4.2
DAF + FF2
4.2 – 4.3
Beach wells /
sand filters
4.3
30
SWRO Design: Area Requirement
SWRO Plant Capacity
[m³/d]
Pre-treatment
Area Requirement 1)
[ha]
FF1
10
MF / UF
9
DAF + FF2
12
FF1
6
MF / UF
5
DAF + FF2
7
Beach wells /
sand filters
1
200,000
100,000
20,000
1)
FF1 including open gravity filters
6543P07/FICHT-6981353-v1
31
Evaluation Cases
4 evaluation cases are conducted in all macro-regions:
 MED-CSP at coast with seawater cooling
 SWRO and CSP at coast with seawater cooling
 SWRO at coast and CSP inland with air cooling
 SWRO at cost, CSP inland with “solar only” operation and air cooling
6543P07/FICHT-6981353-v1
32
CAPEX & OPEX
Key Cost Data - Typical Plants
Specific CAPEX (1)
OPEX
Unit
MED
RO
US$/(m³/
d)
3100
1750 – 2400
US$/m³
0.6 - 0.7
1.0 - 1.4
(1)
Including pre-treatment, post-treatment, electrical and I&C equipment as well as civil
structures including intake and outfall
6543P07/FICHT-6981353-v1
33
CAPEX & OPEX
Cost Distribution – MED Typical Plant
16%
15%
OPEX
32%
35%
ENERGY
CAPEX
53%
Mediterranean
DNI 2400 kWh/m²/yr
Fuel NG
6543P07/FICHT-6981353-v1
49%
Arabian Gulf
DNI 2400 kWh/m²/yr
Fuel NG
34
CAPEX & OPEX
Cost Distribution – SWRO Typical Plant
22%
30%
21%
OPEX
28%
ENERGY
CAPEX
48%
Mediterranean
DNI 2400 kWh/m²/yr
Fuel NG
6543P07/FICHT-6981353-v1
51%
Arabian Gulf
DNI 2400 kWh/m²/yr
Fuel NG
35
Evaluation Cases
4 evaluation cases are conducted in all macro-regions:
 MED-CSP at coast with seawater cooling
 SWRO and CSP at coast with seawater cooling
 SWRO at coast and CSP inland with air cooling
 SWRO at cost, CSP inland with “solar only” operation and air cooling
For the electricity generation by CSP plant
 DNI classes: 2000 / 2400 / 2800 kWh/m²/y
 Fossil fuel options: Heavy Fuel Oil (HFO) / Natural Gas (NG)
 Electricity mix for “solar only” option
6543P07/FICHT-6981353-v1
36
Levelized Water Costs by MED
Levelized Water Production Costs by MED Plant [US $/m³]
2.25
med_ DNI 2000_HFO
2.20
med_DNI 2000_NG
med_DNI 2400_HFO
2.15
med_DNI 2400_NG
Mediterranean
red_DNI 2000_HFO
2.10
2.05
red_DNI 2000_NG
Red Sea
red_DNI 2400_HFO
red_DNI 2400_NG
2.00
gulf_DNI 2000_HFO
Gulf
1.95
gulf_DNI 2000_NG
gulf_DNI 2400_HFO
1.90
gulf_DNI 2400_NG
6543P07/FICHT-6981353-v1
37
Levelized Water Costs by SWRO
Levelized Water Production Costs by SWRO Plants [US $/m³]
1.90
med FF1_HFO_DNI 2000
med FF1_NG_DNI 2000
1.85
med FF1_HFO_DNI 2400
Gulf
1.80
med FF1_NG_DNI 2400
med MF/UF_HFO_DNI 2000
med MF/UF_NG_DNI 2000
1.75
med MF/UF_HFO_DNI 2400
1.70
med MF/UF_NG_DNI 2400
red FF1_HFO_DNI 2000
1.65
red FF1_NG_DNI 2000
Mediterranean
red FF1_HFO_DNI 2400
1.60
red FF1_NG_DNI 2400
1.55
Red Sea
gulf DAF+FF2_HFO_DNI 2000
gulf DAF+FF2_NG_DNI 2000
1.50
1.45
6543P07/FICHT-6981353-v1
Source: NETL
gulf DAF+FF2_HFO_DNI 2400
gulf DAF+FF2_NG_DNI 2400
38
Bridging the Water Gap in MENA
Water supply (MCM/y) based on within the average climate
change scenario for MENA
Year
Efficiency Gains
Unsustainable Extractions
CSP Desalination
Conventional Desalination
Wastewater Reuse
Surface Water Extractions
Groundwater Extractions
Total Demand BaU
6543P07/FICHT-6981353-v1
2000
2010
2020
2030
2040
2050
0
0 17,655 35,959 57,108 80,036
32,432 47,015 44,636
9,104
7,093 16,589
0
0 23,405 55,855 79,461 97,658
4,598
9,210 12,679
9,732
1,054
0
4,445
4,929 16,965 29,618 44,125 60,357
185,256 172,975 146,749 162,131 165,735 150,024
39,136 43,051 48,116 41,491 36,032 37,700
265,868 277,180 310,205 343,891 390,609 442,364
39
Bridging the Water Gap in MENA
Excerpt: OMAN
Water Production in MCM/y
2000
2010
2020
2030
2040
2050
Efficiency Gains
0
0
30
75
150
245
Unsustainable Extractions
0
0
0
0
0
0
CSP Desalination
0
0
0
536
1418
2032
Conventional Desalination
90
297
523
389
44
0
Wastewater Reuse
37
40
82
139
231
335
Surface Water Extractions
624
657
693
568
567
480
Groundwater Extractions
98
0
0
74
65
53
849
994
1328
1780
2475
3145
15
39
56
Total Demand BaU
No of Desalination Plants*
0
0
installed
*Reference desalination plant capacity: 100,000 m³/d
6543P07/FICHT-6981353-v1
0
40
Bridging the Water Gap in MENA
Excerpt: SAUDI ARABIA
Water Production in MCM/y
2000
2010
2020
2030
2040
2050
0
0
826
1606
2485
3271
9126
9299
7289
0
63
0
0
0
3400
2000
3434
3946
2950
286
0
160
158
1132
2144
3380
4611
Surface Water Extractions
6159
6154
6035
5528
5287
4393
Groundwater Extractions
4082
3297
2438
1911
1508
1227
21527 22341
25066
Efficiency Gains
Unsustainable Extractions
CSP Desalination
Conventional Desalination
Wastewater Reuse
Total Demand BaU
No of Desalination Plants*
0
0
installed
*Reference desalination plant capacity: 100,000 m³/d
6543P07/FICHT-6981353-v1
93
14144 20172 23656
28283 33182 37158
388
553
648
41
Bridging the Water Gap in MENA
Excerpt: LIBYA
Water Production in MCM/y
2000
2010
2020
2030
2040
2050
0
0
41
90
151
220
560
183
0
0
0
0
0
0
0
1321
2487
2818
223
223
757
689
0
0
40
43
265
510
817
1153
Surface Water Extractions
821
871
915
963
1007
943
Groundwater Extractions
2529
3124
2862
1598
1290
1112
Total Demand BaU
4174
4444
4840
5171
5751
6247
36
68
77
Efficiency Gains
Unsustainable Extractions
CSP Desalination
Conventional Desalination
Wastewater Reuse
No of Desalination Plants*
0
0
installed
*Reference desalination plant capacity: 100,000 m³/d
6543P07/FICHT-6981353-v1
0
42
Bridging the Water Gap in MENA
Excerpt: MOROCCO
Water Production in MCM/y
Efficiency Gains
Unsustainable Extractions
CSP Desalination
Conventional Desalination
Wastewater Reuse
Surface Water Extractions
Groundwater Extractions
Total Demand BaU
2000
2010
2020
2030
2040
2050
0
0
1035
2118
3328
4487
498
0
1223
0
573
24
0
0
3400
6344
7904
8540
10
25
250
228
0
0
0
0
854
1804
2951
4192
13247 15043
8704
8097
6692
6870
1213
3148
2130
2160
1971
16387 16281
18613
2632
No of Desalination Plants*
0
0
installed
*Reference desalination plant capacity: 100,000 m³/d
6543P07/FICHT-6981353-v1
93
20721 23608 26084
174
217
234
43
Conclusions
 Desalination has the potential to close the water gap (basically)
 Limitations may arise from environmental and financial aspects
 In most evaluation cases, SWRO appears more favorable, however certain
circumstances may call for MED
 Energy is the major cost item for desalinated water
 Future developments of electricity cost will highly influence water production
costs
6543P07/FICHT-6981353-v1
44